Antimicrobial activity of peels and seeds of Citrus limonia and Citrus sinensis

Authors

  • Laura D. Rodríguez-Rodríguez Universidad del Tolima
  • Ángel A. Jiménez-Rodríguez Universidad del Tolima
  • Walter Murillo-Arango Universidad del Tolima
  • Ever A. Rueda-Lorza Universidad del Tolima
  • Jonh J. Méndez-Arteaga Universidad del Tolima

DOI:

https://doi.org/10.17533/udea.acbi.v39n106a05

Keywords:

biopesticides, citrus waste, phytopathogenic microorganisms, secondary metabolites

Abstract

The antimicrobial activity of ethanol extracts and fractions in n-hexane, ethyl acetate, dichloromethane, and water-ethanol obtained from seeds and peels of Citrus limonia and Citrus sinensis, against Aspergillus niger, Botrytis cinerea, Phytophthora cinnamoniand Rhizopus oryzae was evaluated. The inhibitory effect of various extracts was measured on mycelial growth, sporulation, and damage on microscopic morphology of microorganisms by the following methods: optical density and agar diffusion, determining the inhibitory effect on mycelial growth, sporulation, and microscopic morphology of plant pathogens; the extracts were characterized by thin layer chromatography, verifying the presence of secondary metabolites of flavonoid type, alkaloid, and limonoids. A differential behavior arises in the antimicrobial activity of different treatments, being the most active dichloromethane shells extracts, and in this order with increased activity in the dichloromethane fraction of C. limonia. The inhibitory effect on the microorganisms tested was observed at concentrations close to 7 mg/ml, the result of micromorphological damage on hyphae and reproductive structures such as sporangia and conidia, which were dependent on the extracts concentration. The results suggest that residues as agribusiness citrus peels are a source of metabolites with antimicrobial potential in controlling agriculturally important plant pathogens.

|Abstract
= 934 veces | PDF (ESPAÑOL (ESPAÑA))
= 405 veces| | HTML (ESPAÑOL (ESPAÑA))
= 167 veces|

Downloads

Download data is not yet available.

Author Biographies

Laura D. Rodríguez-Rodríguez, Universidad del Tolima

Universidad del Tolima. Ibagué (Tolima), Colombia.

Ángel A. Jiménez-Rodríguez, Universidad del Tolima

Universidad del Tolima. Ibagué (Tolima), Colombia.

Walter Murillo-Arango, Universidad del Tolima

Universidad del Tolima. Ibagué (Tolima), Colombia.

Ever A. Rueda-Lorza, Universidad del Tolima

Universidad del Tolima. Ibagué (Tolima), Colombia.

Jonh J. Méndez-Arteaga, Universidad del Tolima

Universidad del Tolima. Ibagué (Tolima), Colombia.

References

Abramoff MD, Magalhães PJ, Ram SJ. 2004. Image Processing with ImageJ. Biophotonics International, 11 (7): 36-42.

Agronet. 2016. Producción agrícola departamental en la cadena productiva de cítricos en el año 2013. [Internet] Fecha de acceso: 10 de febrero de 2016. Disponible en: <http://www.agronet.gov. co/Paginas/Agrocadenas.aspx>.

Angulo-Escalante MÁ, Armenta-Reyes E, García–Estrada RS, Carrillo– Fasio JA, Salazar–Villa E, Valdéz–Torres JB. 2009. Extracto de semilla de Swietenia humilis Zucc. con actividad antifúngica en Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Revista Mexicana de Fitopatología, 27 (2): 84-92.

Bautista-Baños S, Hernández-López M, Barrera-Necha LL. 2000. Antifungal screening of plants of the State of Morelos, Mexico against four fungal postharvest pathogens of fruits and vegetables. Revista Mexicana de Fitopatología, 18 (1): 36-41.

Bautista-Baños S, Hernández-López M, Bosquez-Molina E, Wilson, CL. 2003. Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection, 22 (9): 1087-1092.

Da Cruz-Cabral L, Pinto VF, Patriarca A. 2013. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology, 166 (1): 1-14.

Del Río JA, Gómez P, Baidez GA, Arcas MC, Botía JM, Ortuño A. 2004. Changes in the level of polymethoxyflavones and flavones as part of the defence mechanism of Citrus sinensis (cv. Valencia late) fruits against Phytophthora citrophthora. Journal of Agricultural and Food Chemistry, 52 (7): 1913-1917.

Del Río JA, Porras I, Martínez D, Gómez P, Díaz L, García LA,Riquelme F, Ortuño A. 2007. Efecto de la conservación en frío y manipulación postcosecha de frutos de Citrus limon (cv. Fino-49) sobre los niveles de flavonoides y resistencia a Penicillium digitatum. En: Artés Calero F, editor. V Congreso Iberoamericano de Tecnología Postcosecha y Agroexportaciones: Cartagena (Murcia): Asociación Iberoamericana de Tecnología Postcosecha (AITEP). p. 299-304.

Duarte YA, Ramírez MB. 2006. Acción antifúngica del extracto etanólico y sus fracciones de polaridad creciente del epicarpio de lima (Citrus aurantifolia swingle) aplicada a Botrytis cinerea y Monilia fructicula causantes de la podredumbre gris en la uva (Vitis vinifera), y la podredumbre morena en el durazno (Prunus serotina Ehrh). Revista Nova Scientia, 2: 56-63.

Evans H. 2007. Cacao diseases. The trilogy revisited. Phytopathology, 97 (12):1640-1643.

Feliziani E, Santini M, Landi L, Romanazzi G. 2013. Pre-and postharvest treatment with alternatives to synthetic fungicides to control postharvest decay of sweet cherry. Postharvest Biology and Technology, 78: 133-138.

Gurjar MS, Ali S, Akhtar M, Singh KS. 2012. Efficacy of plant extracts in plant disease management. Agricultural Sciences, 3 (3): 425-433.

Hadian J, Ghasemnezhad M, Ranjbar H, Frazane M, Ghorbanpour M. 2008. Antifungal potency of some essential oils in control of postharvest decay of strawberry caused by Botrytis cinerea, Rhizopus stolonifer and Aspergillus niger. Journal of Essential Oil Bearing Plants, 11 (5): 553-562.

Jiménez AA, Rodríguez LD, Murillo AW, Méndez JJ, Rueda LA. 2013. Actividad anti-alimentaria de metabolitos secundarios de residuos cítricos sobre Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista Colombiana de Entomología, 39 (1): 113-119.

Khan MK, Dangles O. 2014. A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis, 33 (1): 85-104.

Macías FA, Torres A, Maya CC, Fernández B. 2005. Natural biocides from citrus waste as new wood preservatives. En: Harper JDI, An M, Wu H, Kent JH, editors. Proceedings of the 4th World Congress on Allelopathy, “Establishing the Scientific Base”, Aug. 21-26, 2005. New South Wales (Australia): Charles Sturt University, Wagga. p. 426-429.

Mandalari G, Bennett RN, Bisignano G, Trombetta D, Saija A, Faulds CB, Gasson MJ, Narbad A. 2007. Antimicrobial activity of flavonoids extracted frombergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. Journal of Applied Microbiology, 103 (6): 2056-2064.

Mahomed W, van den Berg N. 2011. EST sequencing and gene expression profiling of defence-related genes from Persea americana infected with Phytophthora cinnamoni. BMC Plant Biology, 11 (1): 167.

Negi S. 2014. Exploring Plant and Agro-industrial Wastes for Antimicrobial Biochemicals. Chapter 14. En: Brar SK, Dhillon GS, CR Soccol, editores. Biotransformation of waste biomass into high value biochemicals. New York (USA): Springer. p. 335-365.

Niurka LA, Hernández MM, Velázquez MG, Guerra MG, Melo GE. 2007. Actividad antifúngica del quitosano en el control de Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. y Mucor spp. Revista Mexicana de Fitopatologia, 25 (2): 109-113.

Ochoa JL, Hernández-Montiel LG, Latisnere-Barragán H, León-de-La Luz JL, Larralde-Corona CP. 2007. Aislamiento e identificación de hongos patógenos de naranja Citrus sinensis L. Osbeck cultivada en Baja California Sur, México. Journal of Food, 5 (5): 352-359.

Okwu DE, Awurum AN, Okoronkwo JI. 2007. Phytochemical composition and in vitro antifungal activity screening of extracts from citrus plants against Fusarium oxysporum of okra plant (Hibiscus esculentus). African Crop Science Society, 8: 1755-1758.

Ortuño A, Báidez A, Gómez P, Arcas MC, Porras I, García LA, Del Río JA. 2006. Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum. Food Chemistry, 98 (2): 351-358.

Rezzadori K, Benedetti S, Amante ER. 2012. Proposals for the residues recovery: orange waste as raw material for new products. Food and Bioproducts Processing, 90 (4): 606-614.

Rodríguez LDR, Jiménez AAR, Rueda EAL, Méndez JJA, Murillo WA. 2014. Relación entre contenido de limonina en residuos cítricos y actividad antialimentaria sobre Spodoptera frugiperda. Revista Colombiana de Entomología, 40 (2): 164-169.

Salas MP, Céliz G, Geronazzo H, Daz M, Resnik S. 2011. Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chemistry, 124: 1411-1415.

Sanmartín NP, López X, Rueda, Ever A. 2012. Análisis del modo de acción y de la capacidad antagónica de Trichoderma asperellum sobre Colletotrichum gloeosporioides y Fusarium sp. Revista Tumbaga, 2 (7): 29-49.

Serey RA, Torres R, Latorre BA. 2007. Pre-and post-infection activity of new fungicides against Botrytis cinerea and other fungi causing decay of table grapes. Ciencia e Investigación Agraria, 34 (3): 215-224.

Torres J, Romero H, Santiago A, Apitz CR. 2011. Susceptibilidad in vitro de Histoplasma capsulatum al ajoene usando los métodos de difusión en agar con discos y pozos. Revista de la Sociedad Venezolana de Microbiología, 26 (1): 42-47.

Wagner H, Bladt S. 1996. Plant drug analysis: a thin layer chromatography atlas. 2da. ed. New York (USA): Springer-Verlag. p. 384.

Weidenbörner M, Jha, HC. 1994. Antifungal activity of flavonoids in relation to degree of hydroxylation, methylation and glycosidation. Acta Horticulturae, 381: 702-708.

Published

2017-09-21

How to Cite

Rodríguez-Rodríguez, L. D., Jiménez-Rodríguez, Ángel A., Murillo-Arango, W., Rueda-Lorza, E. A., & Méndez-Arteaga, J. J. (2017). Antimicrobial activity of peels and seeds of <i>Citrus limonia</i> and <i>Citrus sinensis</i>. Actualidades Biológicas, 39(106), 53–59. https://doi.org/10.17533/udea.acbi.v39n106a05

Issue

Section

Full articles

Most read articles by the same author(s)