Detection of extracellular enzymes in Cuban strains of Metarhizium anisopliae complex with entomopathogenic action against Cylas formicarius Fabricius (Coleoptera: Brentidae)

Authors

  • Yohana Gato-Cárdenas Instituto de Investigaciones de Sanidad Vegetal (INISAV)
  • María E. Márquez-Gutiérrez Universidad de la Habana
  • Yamilé Baró-Robaina Instituto de Investigaciones de Sanidad Vegetal (INISAV)
  • Jaime de Jesús Calle-Osorno Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.acbi.v39n106a07

Keywords:

pathogenic activity, enzymatic activity, biocontrol, coleopteran, entomopathogenic fungi, virulence

Abstract

This study reports the detection, by biochemical methods, of extracellular enzymes related to the biological activity of nine strains of the complex Metarhizium anisopliae (Metsch.) Sorokin. We determined the pathogenic capacity against the insect Cylas formicarius Fabricius at different concentrations, calculated the lethal time and concentration, and analyzed both the presence of extracellular enzymes in the fungal strains as well as their relation to the entomopathogenic effect and virulence against C. formicarius. All strains of the M. anisopliae complex studied were pathogenic with an enzymatic activity index greater than 1. The LBM-30 strain was the most effective with presence of protease, chitinase, caseinase, amylase and lipase enzymes. This result corroborates the relationship between of the enzymatic activity with the observed virulence.

|Abstract
= 1663 veces | PDF (ESPAÑOL (ESPAÑA))
= 237 veces| | HTML (ESPAÑOL (ESPAÑA))
= 40 veces|

Downloads

Download data is not yet available.

Author Biographies

Yohana Gato-Cárdenas, Instituto de Investigaciones de Sanidad Vegetal (INISAV)

Instituto de Investigaciones de Sanidad Vegetal (INISAV). Calle 110 # 514 e/ 5ta B y 5ta F, Playa, La Habana, Cuba.

María E. Márquez-Gutiérrez, Universidad de la Habana

Universidad de la Habana. Calle M # 255e/ 19 y 21, Vedado, La Habana, Cuba.

Yamilé Baró-Robaina, Instituto de Investigaciones de Sanidad Vegetal (INISAV)

Instituto de Investigaciones de Sanidad Vegetal (INISAV). Calle 110 # 514 e/ 5ta B y 5ta F, Playa, La Habana, Cuba.

Jaime de Jesús Calle-Osorno, Universidad de Antioquia

Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia. Calle 67 No. 53-108. Medellín, Colombia.

References

Barriga E, Lándaruzi P, Gallegos P, Williams R. 2002. Evaluación en laboratorio de la patogenicidad de aislamientos nativos de Beauveria sp. y Metarhizium anisopliae para el control de Premnotrypes vorax. Revista Latinoamericana de la Papa, 13: 104-111.

Beys da Silva WO, Santi L, Schrank A, Vainstein MH. 2010. Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. Fungal Biology, 114: 10–15.

Bischoff J, Rehner S, Humber R. 2009. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycology, 100(4): 512-530.

Carrillo-Rayas MT, Blanco-Labra A. 2009. Potencial y algunos mecanismos de acción de los hongos entomopatógenos para el control de insectos plaga. Acta Universitaria, 19(2): 40-49.

Cito A, Mazza G, Strngi A, Benvenuti C, Brazanti G, Dreassi E, Turchetti T, Francadi V, Roversi P. 2014. Characterization and comparison of Metarhizium strains isolated from Rhynchophorus ferrugineus. Microbiology Letters, 335: 108-115.

Dong CH, Zhang J, Huang H, Chen W, Hu Y. 2009. Pathogenicity of a new China variety of Metarhizium anisopliae (M. anisopliae var. dcjhyium) to subterranean termite Odontotermes formosanus. Microbiological Research, 164: 27-35.

Franco-Chávez K, Rodríguez S, Cervantes JF, Barranco JE. 2011. Enzimas y toxinas de hongos entomopatógenos, su aplicación potencial como insecticidas y fungicidas. Sociedades Rurales, Producción y Medio Ambiente, 11 (22): 143-160.

Gato Y, Márquez ME, Baró Y, Porras A, Ulloa Y, Quesada Y. 2016. Caracterización de aislados cubanos del complejo de especies Metarhizium anisopliae con actividad patogénica frente a Cylas formicarius Fabricius (Coleoptera: Brentidae). Protección Vegetal, 31(1): 50-56.

Hartl L, Zach S, Seidl V. 2012.Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Applied Microbiology and Biotechnology, 93: 533–543.

Lang W, Lung I, How C, Choan K, Teish W, Kuo Y, Jon J, Lu C. 2002. Production of antifungal compounds from chitin by Bacillus subtilis. Enzyme and Microbial Technology, 31: 321-328.

Marquéz ME, Fernández-Larrea O, Jiménez J, Elósegui O, Gómez R, Carreras B, Laguardia E, Monzón S, Ayala J, Massó E, Veitía M, Borges G, Baró Y. 2010. Formas de obtención de controladores biológicos microbianos para su uso en el sistema de producción agrícola del MINAG. La Habana (Cuba): Centro de Información y Documentación de Sanidad Vegetal (Cidisav). Instituto de Investigaciones de Sanidad de Vegetal (INISAV). ISBN: 978-959-7194-37-8

Niassy S, Subramanian S, Ekesi S, Bargul JL, Villinger J, Maniania NK. 2013. Use of Metarhizium anisopliae chitinase genes for genotyping and virulence characterization. Journal of Biomedicine and Biotechnology, 2013: 1-9.

Perinotto W, Golo P, Coutinho Rodrigues C, Sá F, Santi L, Beys da Silva W, Junges A, Vainstein M, Schrank A, Salles C, Bittencourt V. 2014. Enzymatic activities and effects of mycovirus infection on the virulence of Metarhizium anisopliae in Rhipicephalus microplus. Veterinary Parasitology, 203: 189–196.

Reddy G, Zhao Z, Humber R. 2014. Laboratory and field efficacy of entomopathogenic fungi for the management of sweet potato weevil, Cylas formicarius (Coleoptera: Brentidae). Journal of Invertebrate Pathology, 122: 10-15.

Roberts D and St. Leger RJ. 2004. Metarhizium spp., Cosmopolitan Insect-Pathogenic Fungi: Mycological Aspects. Advances in Applied Microbiology, 54: 1-58.

Sanivada SM and Challa M. 2014. Mycolytic effect of extracellular enzymes of entomopathogenic fungi to Colletotrichum falcatum, red rot pathogen of sugarcane. Journal of Biopesticides, 7: 33-37.

Schrank A and Vainstein M. 2010. Metarhizium anisopliae enzimes and toxins. Journal of the International Society on Toxinology, 56: 1267-1274.

Seidl V. 2008. Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biology, 22: 36-42.

Souza R, Azevedo R, Lobo A, Rangel D. 2014. Conidial water affinity is an important characteristic for termotolerance in entomopathogenic fungi. Biocontrol Science and Technology, 24 (4): 448-461.

StatSoft, Inc. (2003). STATISTICA (data analysis software system), version 6.0. St. Leger RJ, Joshi L, Roberts D. W. 1997. Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology, 143: 1983-1992.

Suárez-Gómez H. 2009. Patogenicidad de Beauveria bassiana (Deuteromycotina: Hyphomycetes) sobre Sitophilus zea mais Motschulsky (Coleoptera: Curculionidae) plaga del maíz almacenado. Revista Intropica, 4: 47-53.

Yang J, Tian B, Liang L, Zhang K. Q. 2007. Extracellular enzymes and the pathogenesis of nematophagous fungi. Applied Microbiology and Biotechnology, 75: 21-31.

Zimmermann G. 2007. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, 17 (9): 879-920.

Published

2017-09-21

How to Cite

Gato-Cárdenas, Y., Márquez-Gutiérrez, M. E., Baró-Robaina, Y., & Calle-Osorno, J. de J. (2017). Detection of extracellular enzymes in Cuban strains of <i>Metarhizium anisopliae</i> complex with entomopathogenic action against <i>Cylas formicarius</i> Fabricius (Coleoptera: Brentidae). Actualidades Biológicas, 39(106), 71–78. https://doi.org/10.17533/udea.acbi.v39n106a07

Issue

Section

Notas cortas