Antioxidants produced by aquatic and terrestrial microorganisms with potencial use in cosmetics

Authors

  • Zulay Abril-Ibarra Technical University of Ambato

DOI:

https://doi.org/10.17533/udea.acbi.v44n116a02

Keywords:

Natural compounds, bacteria, oxidative stress, mushrooms, microalgae, free radicals

Abstract

Antioxidants are natural or synthetic compounds capable of preventing or delaying oxidative damage, by counteracting free radicals in biomolecules exposed to this type of stress. The food, pharmaceutical and cosmetic industry has replaced chemical ingredients with natural compounds, using substances obtained from plants. However, the greatest source of natural resources is in microorganisms, due to their great diversity and the metabolic mechanisms they have developed to adapt to areas with unfavorable environments. The microorganisms that produce compounds useful for humans that are included in the review are: fungi, bacteria and microalgae. The most explored microorganisms are those that inhabit terrestrial environments due to their accessibility, however the extensive marine environment also harbors a great diversity of organisms from which several compounds such as carotenoids, flavonoids, phenols or exapolysaccharides to applied in cosmetic industry. This article presents a review of 90 articles published between 2015 and 2020 with relevant information about antioxidants produced by aquatic and terrestrial microorganisms with potential use in cosmetics, in order to provide relevant information about alternatives to artificially or plants synthetized antioxidants.

|Abstract
= 2196 veces | PDF (ESPAÑOL (ESPAÑA))
= 1043 veces| | HTML (ESPAÑOL (ESPAÑA))
= 112 veces| | XML (ESPAÑOL (ESPAÑA))
= 55 veces|

Downloads

Download data is not yet available.

References

Agrawal, S., Deshmukh, S. K., Reddy, M. S., Prasad, R., & Goel, M. (2020). Endolichenic fungi: A hidden source of bioactive metabolites. South African Journal of Botany, 000, 1–24 (2019). https://doi.org/10.1016/j.sajb.2019.12.008

Amarowicz, R., & Pegg, R. B. (2019). Natural antioxidants of plant origin.Advances in Food and Nutrition Research, 90(1), 1–81. https://doi.org/10.1016/bs.afnr.2019.02.011

Ambati, R. R., Gogisetty, D., Aswathanarayana, R. G., Ravi, S., Bikkina, P. N., Bo, L., & Yuepeng, S. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 59(12), 1880–1902. https://doi.org/10.1080/10408398.2018.1432561

Amorati, R., & Valgimigli, L. (2015). Advantages and limitations of common testing methods for antioxidants. Free Radical Research, 49(5), 633–649. https://doi.org/10.3109/10715762.2014.996146

Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001

Badr, O. A. M., EL-Shawaf, I. I. S., El-Garhy, H. A. S., Moustafa, M. M. A., & Ahmed-Farid, O. A. (2019). The potent therapeutic effect of novel cyanobacterial isolates against oxidative stress damage in redox rats. Journal of Applied Microbiology, 126(4), 1278–1289. https://doi.org/10.1111/jam.14200

Baker, B. J., Appler, K. E., & Gong, X. (2020). New microbial biodiversity in marine sediments. Annual Review of Marine Science, 13(1). 161–175. https://doi.org/10.1146/annurev-marine-032020-014552

Bazinet, L., & Doyen, A. (2015). Antioxidants, mechanisms, and recovery by membrane processes. Critical Reviews in Food Science and Nutrition, 57(4), 677–700. https://doi.org/10.1080/10408398.2014.912609

Berthon, J. Y., Nachat-Kappes, R., Bey, M., Cadoret, J. P., Renimel, I., & Filaire, E. (2017). Marine algae as attractive source to skin care. Free Radical Research, 51(6), 555–567. https://doi.org/10.1080/10715762.2017.1355550

Bianchet, R. T., Vieira Cubas, A. L., Machado, M. M., & Siegel Moecke, E. H. (2020). Applicability of bacterial cellulose in cosmetics – bibliometric review. Biotechnology Reports, 27, 1–6. https://doi.org/10.1016/j.btre.2020.e00502

Bouiche, C., Boucherba, N., Benallaoua, S., Martinez, J., Diaz, P., Pastor, F. I. J., & Valenzuela, S. V. (2020). Differential antioxidant activity of glucuronoxylooligosaccharides (UXOS) and arabinoxylooligosaccharides (AXOS) produced by two novel xylanases. International Journal of Biological Macromolecules, 155, 1075–1083. https://doi.org/10.1016/j.ijbiomac.2019.11.073

Camarena-Tello, J. C., Martínez-Flores, H. E., Garnica-Romo, M. G., Padilla-Ramírez, J. S., Saavedra-Molina, A., Alvarez-Cortes, O., Bartolomé-Camacho, M. C., & Rodiles-López, J. O. (2018). Quantification of phenolic compounds and in vitro radical scavenging abilities with leaf extracts from two varieties of Psidium guajava L. Antioxidants, 7(3), 1-12. https://doi.org/10.3390/antiox7030034

Ceylan, S., Cetin, S., Camadan, Y., Saral, O., Ozsen, O., & Tutus, A. (2019). Antibacterial and antioxidant activities of traditional medicinal plants from the Erzurum region of Turkey. Irish Journal of Medical Science, 188(4), 1303–1309. https://doi.org/10.1007/s11845-019-01993-x

Chandra, P., Sharma, R. K., & Arora, D. S. (2020). Antioxidant compounds from microbial sources: A review. Food Research International, 129, 1088–1149. https://doi.org/10.1016/j.foodres.2019.108849

Cheng, Y. T., & Yang, C. F. (2016). Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. Journal of the Taiwan Institute of Chemical Engineers, 61, 270–275. https://doi.org/10.1016/j.jtice.2015.12.027

Costa, C. R. R., Amorim, B. R., da Silva, S. M. M., Acevedo, A. C., Magalhães, P. D. O., & Guerra, E. N. S. (2019). In vitro evaluation of Eugenia dysenterica in primary culture of human gingival fibroblast cells. Brazilian Oral Research, 33, e035. https://doi.org/10.1590/1807-3107BOR-2019.VOL33.0035

Cottrez, F., Boitel, E., Berrada-Gomez, M. P., Dalhuchyts, H., Bidan, C., Rattier, S., Ferret, P. J., & Groux, H. (2020). In vitro measurement of skin sensitization hazard of mixtures and finished products: Results obtained with the SENS-IS assays. Toxicology in Vitro, 62, 104644. https://doi.org/10.1016/j.tiv.2019.104644

Danagoudar, A., Joshi, C. G., Sunil Kumar, R., Poyya, J., Nivya, T., Hulikere, M. M., & Anu Appaiah, K. (2017). Molecular profiling and antioxidant as well as anti-bacterial potential of polyphenol producing endophytic fungus-Aspergillus austroafricanus CGJ-B3. Mycology, 8(1), 28–38. https://doi.org/10.1080/21501203.2017.1281358

De la Vega, M., Sayago, A., Ariza, J., Barneto, A. G., & León, R. (2016). Characterization of a bacterioruberin-producing Haloarchaea isolated from the marshlands of the Odiel river in the southwest of Spain. Biotechnology Progress, 32(3), 592–600. https://doi.org/10.1002/btpr.2248

Dorta, E., Rodríguez-Rodríguez, E. M., Jiménez-Quezada, A., Fuentes-Lemus, E., Speisky, H., Lissi, E., & López-Alarcón, C. (2016). Use of the oxygen radical absorbance capacity (ORAC) assay to predict the capacity of Mango (Mangifera indica L.) by-products to inhibit meat protein oxidation. Food Analytical Methods, 10(2), 330–338. https://doi.org/10.1007/S12161-016-0584-5

Dwibedi, V., & Saxena, S. (2018). Arcopilus aureus, a resveratrol-producing endophyte from Vitis vinifera. Applied Biochemistry and Biotechnology, 186(2), 476–495. https://doi.org/10.1007/s12010-018-2755-x

Dwibedi, V., & Saxena, S. (2020). In vitro anti-oxidant, anti-fungal and anti-staphylococcal activity of resveratrol-producing endophytic fungi. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(1), 207–219. https://doi.org/10.1007/s40011-019-01098-6

Fagundes, M. B., Falk, R. B., Facchi, M. M. X., Vendruscolo, R. G., Maroneze, M. M., Zepka, L. Q., Jacob-Lopes, E., & Wagner, R. (2019). Insights in cyanobacteria lipidomics: A sterols characterization from Phormidium autumnale biomass in heterotrophic cultivation. Food Research International, 119, 777–784. https://doi.org/10.1016/j.foodres.2018.10.060

Gramza-Michalowska, A., Sidor, A., Regula, J., & Kulczynski, B. (2015). PCL assay application in superoxide anion-radical scavenging capacity of tea Camellia sinensis extracts. Acta Scientiarum Polonorum, Technologia Alimentaria, 14(4), 331–341. https://doi.org/10.17306/J.AFS.2015.4.33

Hamed, I. (2016). The evolution and versatility of microalgal biotechnology: A review. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1104–1123. https://doi.org/10.1111/1541-4337.12227

Hamidi, M., Safarzadeh Kozani, P., Safarzadeh Kozani, P., Pierre, G., Michaud, P., & Delattre, C. (2020). Marine bacteria versus microalgae: Who is the best for biotechnological production of bioactive compounds with antioxidant properties and other biological applications? Marine Drugs, 18(1), 28–46. https://doi.org/10.3390/md18010028

Hęś, M., Dziedzic, K., Górecka, D., Jędrusek-Golińska, A., & Gujska, E. (2019). Aloe vera (L.) Webb.: Natural sources of antioxidants – A review. Plant Foods for Human Nutrition, 74(3), 255–265. https://doi.org/10.1007/s11130-019-00747-5

Hidalgo, D., Sanchez, R., Lalaleo, L., Bonfill, M., Corchete, P., & Palazon, J. (2018). Biotechnological production of pharmaceuticals and biopharmaceuticals in plant cell and organ cultures. Current Medicinal Chemistry, 25(30), 3577–3596. https://doi.org/10.2174/0929867325666180309124317

Hou, J., & Cui, H. L. (2018). In vitro antioxidant, antihemolytic, and anticancer activity of the carotenoids from halophilic archaea. Current Microbiology, 75(3), 266–271. https://doi.org/10.1007/s00284-017-1374-z

Huang, C., Zhang, Z., & Cui, W. (2019). Marine-derived natural compounds for the treatment of Parkinson’s disease. Marine Drugs, 17(4), 221–240. https://doi.org/10.3390/md17040221

Huang, R., Xia, M., Sakamuru, S., Zhao, J., Shahane, S. A., Attene-Ramos, M., Zhao, T., Austin, C. P., & Simeonov, A. (2016). Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nature Communications, 7, 1–10. https://doi.org/10.1038/ncomms10425

Hüglin, D. (2016). Advanced UV absorbers for the protection of human skin. Chimia, 70(7–8), 496–501. https://doi.org/10.2533/chimia.2016.496

Ishihara, K., Watanabe, R., Uchida, H., Suzuki, T., Yamashita, M., Takenaka, H., Nazifi, E., Matsugo, S., Yamaba, M., & Sakamoto, T. (2017). Novel glycosylated mycosporine-like amino acid, 13-O-(β-galactosyl)-porphyra-334, from the edible cyanobacterium Nostoc sphaericum-protective activity on human keratinocytes from UV light. Journal of Photochemistry and Photobiology B: Biology, 172, 102–108. https://doi.org/10.1016/j.jphotobiol.2017.05.019

Jerez-Martel, I., García-Poza, S., Rodríguez-Martel, G., Rico, M., Afonso-Olivares, C., & Gómez-Pinchetti, J. L. (2017). Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. Journal of Food Quality, 2017, 2924508. https://doi.org/10.1155/2017/2924508

Kaboré, A. K., Olmos, E., Fick, M., Blanchard, F., Guedon, E., & Delaunay, S. (2017). Aerobiosis–anaerobiosis transition has a significant impact on organic acid production by Corynebacterium glutamicum. Process Biochemistry, 52, 10–21. https://doi.org/10.1016/j.procbio.2016.10.007

Khan, I., & Ahmad, A. (2020). The impact of natural antioxidants on human health. In S. Ahmad, & N. A. Al-Shabib (Eds.), Functional Food Products and Sustainable Health (pp.11-24). Springer Singapore. https://doi.org/10.1007/978-981-15-4716-4_2

Kot, A. M., Błazejak, S., Gientka, I., Kieliszek, M., & Bryś, J. (2018). Torulene and torularhodin: “New” fungal carotenoids for industry? Microbial Cell Factories, 17, 49–63. https://doi.org/10.1186/s12934-018-0893-z

Lee, Y. S., Yi, J. S., Lim, H. R., Kim, T. S., Ahn, I. Y., Ko, K., Kim, J. H., Park, H. K., Sohn, S. J., & Lee, J. K. (2017).

Phototoxicity evaluation of pharmaceutical substances with a reactive oxygen species assay using ultraviolet a. Toxicological Research, 33(1), 43–48. https://doi.org/10.5487/TR.2017.33.1.043

Li, B., Zhou, Z., Xue, Z., Wei, P., Ren, Y., Cao, L., Feng, X., Yao, Q., Ma, J., Xu, P., & Chen, X. (2020). Study on the pollution characteristics and sources of ozone in typical loess Plateau City. Atmosphere, 11(6). https://doi.org/10.3390/atmos11060555

Li, M., Kildegaard, K. R., Chen, Y., Rodriguez, A., Borodina, I., & Nielsen, J. (2015). De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metabolic Engineering, 32, 1–11. https://doi.org/10.1016/j.ymben.2015.08.007

Liu, J., Mao, X., Zhou, W., & Guarnieri, M. T. (2016). Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis. Bioresource Technology, 214, 319–327. https://doi.org/10.1016/j.biortech.2016.04.112

Lutzu, G. A., & Dunford, N. T. (2018). Interactions of microalgae and other microorganisms for enhanced production of high-value compounds. Frontiers in Bioscience - Landmark, 23(8), 1487–1504. https://doi.org/10.2741/4656

Malanca, F., & Arguello, G. (2017). Cuando hacemos las cosas mal. La disminución de la capa de ozono y el cambio climático, dos problemas ambientales a escala global. Bitácora Digital, 4(8), 1-4. https://doi.org/11336/121482.

Mendes-Silva, T. de C. D., Andrade, R. F. da S., Ootani, M. A., Mendes, P. V. D., Sá, R. A. de Q. C. de, Silva, M. R. F. da, Souza, K. S., Correia, M. T. dos S., Silva, M. V. da, & Oliveira, M. B. M. de. (2020). Biotechnological potential of carotenoids produced by extremophilic microorganisms and application prospects for the cosmetics industry. Advances in Microbiology, 10(08), 397–410. https://doi.org/10.4236/aim.2020.108029

Millington, K. R., & Marsh, M. (2020). UV damage to hair and the effect of antioxidants and metal chelators. International Journal of Cosmetic Science, 42, 174–184. https://doi.org/10.1111/ics.12601

Mishra, A. K., Mishra, A., Pragya, & Chattopadhyay, P. (2018). Screening of acute and sub-chronic dermal toxicity of Calendula officinalis L essential oil. Regulatory Toxicology and Pharmacology, 98, 184–189. https://doi.org/10.1016/j.yrtph.2018.07.027

Mussagy, C. U., Winterburn, J., Santos-Ebinuma, V. C., & Pereira, J. F. B. (2019). Production and extraction of carotenoids produced by microorganisms. Applied Microbiology and Biotechnology, 103(3), 1095–1114. https://doi.org/10.1007/s00253-018-9557-5

Ndongo, S., Khelaifia, S., Lagier, J. C., & Raoult, D. (2020). From anaerobes to aerointolerant prokaryotes. Human Microbiome Journal, 15, 100068. https://doi.org/10.1016/j.humic.2019.100068

Neha, K., Haider, M. R., Pathak, A., & Yar, M. S. (2019). Medicinal prospects of antioxidants: A review. European Journal of Medicinal Chemistry, 178, 687–704. https://doi.org/10.1016/j.ejmech.2019.06.010

Novoveská, L., Ross, M. E., Stanley, M. S., Pradelles, R., Wasiolek, V., & Sassi, J. F. (2019). Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine Drugs, 17(11), 1–21. https://doi.org/10.3390/md17110640

Nowruzi, B., Sarvari, G., & Blanco, S. (2020). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49, 101959. https://doi.org/10.1016/j.algal.2020.101959

Oniga, I., Pus, C., Silaghi-Dumitrescu, R., Olah, N. K., Sevastre, B., Marica, R., Marcus, I., Sevastre-Berghian, A. C., Benedec, D., Pop, C. E., & Hanganu, D. (2018). Origanum vulgare ssp. vulgare: Chemical composition and biological studies. Molecules, 23(8), 2077. https://doi.org/10.3390/molecules23082077

Palareti, G., Legnani, C., Cosmi, B., Antonucci, E., Erba, N., Poli, D., Testa, S., & Tosetto, A. (2016). Mechanisms and prevention of UV-induced melanoma. International Journal of Laboratory Hematology, 38(1), 42–49. https://doi.org/10.1111/ijlh.12426

Patel, A., Rova, U., Christakopoulos, P., & Matsakas, L. (2019). Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates. Biotechnology for Biofuels, 12(1), 1–12. https://doi.org/10.1186/s13068-019-1593-6

Pedroso, S., Luíza, D., Pinheiro, N., Marques, N., Susin, B., & Dal, V. (2019). Production of metabolites with antioxidant activity by Botryosphaeria dothidea in submerged fermentation. Bioprocess and Biosystems Engineering, 43, 13-20. https://doi.org/10.1007/s00449-019-02200-y

Penchaszadeh, P. E. (2017). Ciencia Hoy No 157. Ciencia Hoy. http://ebookcentral.proquest.com/lib/utasp/detail.action?docID=5349514

Pengkumsri, N., Kaewdoo, K., Leeprechanon, W., & Sivamaruthi, B. S. (2019). Influence of extraction methods on total phenolic content and antioxidant properties of some of the commonly used plants in Thailand. Pakistan Journal of Biological Sciences, 22(3), 117–126. https://doi.org/10.3923/pjbs.2019.117.126

Petruk, G., Roxo, M., De Lise, F., Mensitieri, F., Notomista, E., Wink, M., Izzo, V., & Monti, D. M. (2019). The marine Gram-negative bacterium Novosphingobium sp. PP1Y as a potential source of novel metabolites with antioxidant activity. Biotechnology Letters, 41(2), 273–281. https://doi.org/10.1007/s10529-018-02636-4

Peyrat, L. A., Tsafantakis, N., Georgousaki, K., Ouazzani, J., Genilloud, O., Trougakos, I. P., & Fokialakis, N. (2019). Terrestrial microorganisms: Cell factories of bioactive molecules with skin protecting applications. Molecules, 24(9), 1836. https://doi.org/10.3390/molecules24091836

Prihantini, A. I., & Tachibana, S. (2017). Antioxidant compounds produced by Pseudocercospora sp. ESL 02, an endophytic fungus isolated from Elaeocarpus sylvestris. Asian Pacific Journal of Tropical Biomedicine, 7(2), 110–115. https://doi.org/10.1016/j.apjtb.2016.11.020

Ragavan, M. L., & Das, N. (2019). Optimization of exopolysaccharide production by probiotic yeast Lipomyces starkeyi VIT-MN03 using response surface methodology and its applications. Annals of Microbiology, 69(5), 515–530. https://doi.org/10.1007/s13213-019-1440-9

Ramana, K. V, Reddy, A. B. M., Ravi, N. V, Majeti, K., & Singhal, S. S. (2018). Therapeutic potential of natural antioxidants. Oxidative Medicine and Cellular Longevity, 2018, 9471051. https://doi.org/10.1155/2018/9471051

Reis-Mansur, M. C. P. P., Cardoso-Rurr, J. S., Silva, J. V. M. A., de Souza, G. R., Cardoso, V. da S., Mansoldo, F. R. P., Pinheiro, Y., Schultz, J., Lopez Balottin, L. B., da Silva, A. J. R., Lage, C., dos Santos, E. P., Rosado, A. S., & Vermelho, A. B. (2019). Carotenoids from UV-resistant Antarctic Microbacterium sp. LEMMJ01. Scientific Reports, 9(1), 9554. https://doi.org/10.1038/s41598-019-45840-6

Ribera, M. (2019). Similarities, differences and mechanisms of climate impact on terrestrial vs. Marine ecosystems. Nature Conservation, 34, 505–523. Pensoft Publishers. https://doi.org/10.3897/natureconservation.34.30923

Rogiers, V., Benfenati, E., Bernauer, U., Bodin, L., Carmichael, P., Chaudhry, Q., Coenraads, P. J., Cronin, M. T. D., Dent, M., Dusinska, M., Ellison, C., Ezendam, J., Gaffet, E., Galli, C. L., Goebel, C., Granum, B., Hollnagel, H. M., Kern, P. S., Kosemund-Meynen, K., … Worth, A. (2020). The way forward for assessing the human health safety of cosmetics in the EU - Workshop proceedings. Toxicology, 436, 152421. https://doi.org/10.1016/j.tox.2020.152421

Saini, R. K., & Keum, Y. S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90–103. https://doi.org/10.1016/j.foodchem.2017.07.099

Sakthivel, R., & Devi, K. P. (2019). Antioxidant, anti-inflammatory and anticancer potential of natural bioactive compounds from seaweeds. In Studies in Natural Products Chemistry, (pp. 113-154). Elsevier Inc. https://doi.org/10.1016/B978-0-12-817901-7.00005-8

Satoh, K., & Oono, Y. (2019). Studies on application of ion beam breeding to industrial microorganisms at TIARA. Quantum Beam Science, 3(2), 11. https://doi.org/10.3390/qubs3020011

Sevimli-Gur, C., & Yesil-Celiktas, O. (2019). Cytotoxicity screening of supercritical fluid extracted seaweeds and phenylpropanoids. Molecular Biology Reports, 46(4), 3691–3699. https://doi.org/10.1007/s11033-019-04812-9

Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science, 7, 531. https://doi.org/10.3389/fpls.2016.00531

Singh, Davinder Pal, Khattar, J. S., Rajput, A., Chaudhary, R., & Singh, R. (2019). High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS ONE, 14(9), 1–19. https://doi.org/10.1371/journal.pone.0221930

Singh, Dhananjaya P, Prabha, R., Verma, S., Meena, K. K., & Yandigeri, M. (2017). Antioxidant properties and polyphenolic content in terrestrial cyanobacteria. 3 Biotech, 7(2), 134. https://doi.org/10.1007/s13205-017-0786-6

Sirivibulkovit, K., Nouanthavong, S., & Sameenoi, Y. (2018). Paper-based DPPH assay for antioxidant activity analysis. Analytical Sciences, 34(7), 795–800. https://doi.org/10.2116/analsci.18P014

Ślesak, I., Kula, M., Ślesak, H., Miszalski, Z., & Strzałka, K. (2019). How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth. Free Radical Biology and Medicine, 140, 61–73. https://doi.org/10.1016/j.freeradbiomed.2019.03.004

Soares, G. P. A., Souza, K. S. T., Vilela, L. F., Schwan, R. F., & Dias, D. R. (2017). γ-decalactone production by Yarrowia lipolytica and Lindnera saturnus in crude glycerol. Preparative Biochemistry and Biotechnology, 47(6), 633–637. https://doi.org/10.1080/10826068.2017.1286601

Soong, J. L., Fuchslueger, L., Marañon-Jimenez, S., Torn, M. S., Janssens, I. A., Penuelas, J., & Richter, A. (2020). Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biology, 26(4), 1953–1961. https://doi.org/10.1111/gcb.14962

Sugibayashi, K., Yusuf, E., Todo, H., Dahlizar, S., Sakdiset, P., Arce, F. J., & See, G. L. (2019). Halal cosmetics: A review on ingredients, production, and testing methods. Cosmetics, 6(3), 1–17. https://doi.org/10.3390/cosmetics6030037

Suh, M., Proctor, D., Chappell, G., Rager, J., Thompson, C., Borghoff, S., Finch, L., Ellis-Hutchings, R., & Wiench, K. (2018). A review of the genotoxic, mutagenic, and carcinogenic potentials of several lower acrylates. Toxicology, 402, 50–67. https://doi.org/10.1016/j.tox.2018.04.006

Sun, X. M., Ren, L. J., Bi, Z. Q., Ji, X. J., Zhao, Q. Y., Jiang, L., & Huang, H. (2018). Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp. Biotechnology for Biofuels, 11(1), 65. https://doi.org/10.1186/s13068-018-1065-4

Surya Prakash, D. V., Vangalapati, M., & Munawar, T. M. (2019). Evaluation of anticancer activity of polyherbal extract of Terminalia chebula, Phyllanthus emblica and Dimocarpus longan on caco-2 colorectal cancer cell lines. International Journal of Innovative Technology and Exploring Engineering, 9(1), 700–706. https://doi.org/10.35940/ijitee.A3942.119119

Trabelsi, L., Chaieb, O., Mnari, A., Abid-Essafi, S., & Aleya, L. (2016). Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. BMC Complementary and Alternative Medicine, 16(1), 1–10. https://doi.org/10.1186/s12906-016-1198-6

Tuttle, A. H., Philip, V. M., Chesler, E. J., & Mogil, J. S. (2018). Comparing phenotypic variation between inbred and outbred mice. Nature Methods, 15(12), 994–996. Nature Publishing Group. https://doi.org/10.1038/s41592-018-0224-7

Uma Anitha, K. P. G., & Mythili, S. (2017). Antioxidant and hepatoprotective potentials of novel endophytic fungus Achaetomium sp., from Euphorbia hirta. Asian Pacific Journal of Tropical Medicine, 10(6), 588–593. https://doi.org/10.1016/j.apjtm.2017.06.008

Unsal, V., Dalkıran, T., Çiçek, M., & Kölükçü, E. (2020). The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: A review. Tabriz University of Medical Sciences, 7(2), 113–117. https://doi.org/10.34172/apb.2020.023

Valentová, K. (2020). Cytoprotective activity of natural and synthetic antioxidants. Antioxidants, 713(9), 13–16. https://doi.org/10.3390/antiox9080713.

Wang, L., Du, H., & Chen, P. (2020). Chlorogenic acid inhibits the proliferation of human lung cancer A549 cell lines by targeting annexin A2 in vitro and in vivo. Biomedicine and Pharmacotherapy, 131, 110673. https://doi.org/10.1016/j.biopha.2020.110673

Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D., & Kuča, K. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of Toxicology, 90(8), 1817–1840. https://doi.org/10.1007/s00204-016-1744-5

Yang, C. S., Ho, C. T., Zhang, J., Wan, X., Zhang, K., & Lim, J. (2018). Antioxidants: differing meanings in food science and health science. Journal of Agricultural and Food Chemistry, 66(12), 3063–3068. https://doi.org/10.1021/acs.jafc.7b05830

Yin, Y., Cai, M., Zhou, X., Li, Z., & Zhang, Y. (2016). Polyketides in Aspergillus terreus: biosynthesis pathway discovery and application. Applied Microbiology and Biotechnology, 100(18), 7787–7798. https://doi.org/10.1007/s00253-016-7733-z

Yukuyama, M. N., Ghisleni, D. D. M., Pinto, T. J. A., & Bou-Chacra, N. A. (2016). Nanoemulsion: process selection and application in cosmetics - a review. International Journal of Cosmetic Science, 38(1), 13–24. https://doi.org/10.1111/ics.12260

Zhang, B., Jin, X., Yin, H., Zhang, D., Zhou, H., Zhang, X., & Tran, L. S. P. (2020). Natural products, traditional uses and pharmacological activities of the genus Biebersteinia (Biebersteiniaceae). Plants, 9(5), 595. https://doi.org/10.3390/plants9050595

Zhao, Y., Guo, L., Xia, Y., Zhuang, X., & Chu, W. (2019). Isolation, identification of carotenoid-producing Rhodotorula sp. From marine environment and optimization for carotenoid production. Marine Drugs, 17(3), 161. https://doi.org/10.3390/md17030161

Published

2021-11-23

How to Cite

Abril-Ibarra, Z. (2021). Antioxidants produced by aquatic and terrestrial microorganisms with potencial use in cosmetics. Actualidades Biológicas, 44(116), 1–19. https://doi.org/10.17533/udea.acbi.v44n116a02

Issue

Section

Review articles