Larvicidal activity of Bacillus thuringiensis subsp. israelensis (Bacillaceae) and plant extracts for the biological control of Aedes aegypti (Culicidae)

Authors

DOI:

https://doi.org/10.17533/udea.acbi.v44n117a05

Keywords:

bioassays, binary mixtures, dengue, mosquitoes, vectors

Abstract

Aedes aegypti transmits viruses that cause diseases such as dengue, yellow fever, Zika and chikungunya. Chemical pesticides have been used to control this vector, but mosquitoes have developed resistance to insecticides. Biological control with microorganisms and plant extracts are effective alternatives for the management of insect vector populations and introduce less pollutants into the environment. The objective of this research was to evaluate the larvicidal activity of Bacillus thuringiensis subsp. israelensis (Bti) and extracts of Annona muricata, Ricinus communis and Sapindus saponaria for the biological control of A. aegypti larvae. For this, ethanolic extracts of seeds or fruits of the three plant species were obtained and lethal concentrations for 50 % mortality of the extracts and bacteria were determined. Subsequently, combinations of the extracts with Bti were made and the interactions were evaluated. Both bacteria and plant extracts showed larvicidal activity. Mixtures of Bti with the ethanolic extracts of R. communis and S. saponaria generated an antagonistic effect, while in combination with ethanolic extracts of A. muricata presented an independent action effect. Therefore, the addition of the ethanolic extract of A. muricata seeds to sporulated cultures of Bti could be considered more effective for the biological control of A. aegypti than with each compound separately.

|Abstract
= 1080 veces | PDF (ESPAÑOL (ESPAÑA))
= 772 veces| | PDF
= 55 veces| | HTML
= 24 veces| | XML
= 4 veces|

Downloads

Download data is not yet available.

Author Biographies

Sebastián Sanabria Jimenez, Salle University

Programa de Biología, Departamento de Ciencias Básicas, Universidad de La Salle, Bogotá‐Colombia.

Lucía C. Lozano, Salle University

Programa de Biología, Departamento de Ciencias Básicas, Universidad de La Salle, Bogotá‐Colombia.

References

Abendroth, J., Blankenship, E., Martin, A., & Roeth,F. (2011). Joint action analysis utilizing concentra-tion addition and independent action models.WeedTechnology, 25(3), 436−446.https://doi.org/10.1614/WT-D-10-00102.1

Amariles, B., Garc ́ıa, P., & Parra, H. (2013). Activi-dad insecticida de extractos vegetales sobre larvasdeAedes aegypti, Diptera: Culicidae.CES Medicina,27(2), 193−203.https://revistas.ces.edu.co/index.php/medicina/article/view/2680

Ben, E. (2014).Bacillus thuringiensissubsp.israelensisandits dipteran-specific toxins.Toxins, 6(4), 1222−1243.https://doi.org/10.3390/toxins6041222

Bobadilla, M., Zavala, F., Sisniegas, M., Zavaleta, G., Mos-tacero, J., & Taramona, L. (2005). Evaluaci ́on larvicidade suspensiones acuosas deAnnona muricataLinnaeus“guan ́abana” sobreAedes aegyptiLinnaeus (Diptera, Cu-licidae).Revista Peruana de Biologia, 12(1), 145−152.https://doi.org/10.15381/rpb.v12i1.2369

Cardenas, O., Silva, E., Morales, L., & Ortiz, J. (2005). Estudioepidemiol ́ogico de la exposici ́on a plaguicidas organo-fosforados y carbamatos en siete departamentos colom-bianos, 1998-2001.Biom ́edica, 25(2), 170−180.https://doi.org/10.7705/biomedica.v25i2.1339

Carrion, J., & Garcia, G. (2010).Preparaci ́on de extractosvegetales: Determinaci ́on de eficiencia de met ́odica; [Tesisde pregrado]. Repositorio institucional de la Universi-dad de Cuenca.http://dspace.ucuenca.edu.ec/handle/123456789/2483

Corradine, M., Beltr ́an, S., Corredor, P., & Moreno, A. (2014).Eficiencia del extracto deRicinus communispara el con-trol del mosquitoCulex.Revista Cient ́ıfica, 19(2), 86−92.http://dx.doi.org/10.14483/23448350.6496

Chang, K., Hyun, S., Dae, Y., & Young, A. (2014). Enhanced toxicity of binary mixtures of Bacillus thuringiensis subsp.israelensis and three essential oil major constituents to wild Anopheles sinensis (Diptera: Culicidae)and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 51(4), 804−810.https://doi.org/10.1603/ME13128.

Da-Cunha, M., Lima, J., Brogdon, W., Moya, G., & Valle,D. (2005). Monitoring of resistance to the pyrethroid Cypermetrin in Brazilian Aedes aegypti (Diptera: Cu-licidae) populations collected between 2001 and 2003.Mem ́orias do Instituto Oswaldo Cruz, 100(4), 441−444. http://dx.doi.org/10.1590/S0074-02762005000400017

Drescher, K., & Boedeker, W. (1995). Assessment of the combined effects of substances: The relationship between concentration addition and independent action. Biometrics, 51(2), 716−730.https://doi.org/10.2307/2532957

Espinal, M., Andrus, J., Jauregui, B., Hull-Waterman, S.,Morens, D., Santos, J. Horstick, O., Francis, L., & Olson,D. (2019). Emerging and reemergingAedes-transmittedarbovirus infections in the region of the Americas: Im-plications for health policy.American Journal of PublicHealth, 109, 387−392.https://doi.org/10.2105/AJPH.2018.304849

Fonseca, I., & Qui ̃nones, M. (2005). Resistencia ainsecticidas en mosquitos (Diptera: Culicidae):mecanismos, detecci ́on y vigilancia en saludp ́ublica.Revista Colombiana de Entomolog ́ıa, 31(2),107−115.http://www.scielo.org.co/scielo.php?pid=S0120-04882005000200001&script=sciabstract&tlng=es

Garcia, S., Verduzco, R., & Ibarra, E. (2021). Isolation andcharacterization of two highly insecticidal, endophyticstrains ofBacillus thuringiensis.FEMS Microbiology Eco-logy, 97(7),17.https://doi.org/10.1093/femsec/fiab080

Gomez, G. (2015).Evaluaci ́on larvicida del extracto etan ́olicode la semilla de Carica papaya sobre larvas del IV estadiode Aedes aegypti (Diptera: Culicidae) en condiciones delaboratorio; [Tesis de pregrado]. Repositorio institucionalde la Universidad Distrital Francisco Jos ́e de Caldas.https://repository.udistrital.edu.co/handle/11349/3989

Jayaraj, R., Megha, P., & Sreedev, P. (2016). Organo-chlorine pesticides, their toxic effects on living orga-nisms and their fate in the environment.Interdisci-plinary Toxicology, 9(3-4), 90−100.https://doi.org/10.1515/intox-2016-0012

InterdisciplinaryLemes, A., Davolos, C., Legori, P., Fernandes, O., Ferre,J., Lemos, M., & Desiderio, J. (2014). Synergism andantagonism betweenBacillus thuringiensisVip3A andCry1 proteins inHeliothis virescens,Diatraea saccharalisandSpodoptera frugiperda. PLoS One, 9(10), 107−196.https://doi.org/10.1371/journal.pone.0107196

Lozano, L. C., & Duss ́an, J. (2017). Synergistic activity bet-ween S-layer protein and sporecrystal preparations fromLysinibacillus sphaericusagainstCulex quinquefasciatuslarvae.Current Microbiology, 74(3), 371−376.https://doi.org/10.1007/s00284-016-1185-7

Mendoza, G., Esparza, E., Ayala, J., Mercado, M., Godina,S., Hern ́andez, M., & Olmos, J. (2020). The cytocidalspectrum ofBacillus thuringiensistoxins: From insectsto human cancer cells.Toxins, 12(5), 290−301.https://doi.org/10.3390/toxins12050301

Murugan, K., Thangamathi, P., & Jeyabalan, D. (2002). In-teractive effect of botanicals andBacillus thuringiensissubspisraelensionCulex quinquefasciatusSay.Journalof Scientific and Industrial Research, 61(12), 1068−1076.http://nopr.niscair.res.in/handle/123456789/17742

Nelson, J. (1986).Aedes aegypti: biologia y ecologia; Organizacion Panamericana de la Salud. https://iris.paho.org/handle/10665.2/28513

Organizacion Mundial para la Salud (OMS). (2017). Respuesta mundial para el control de vectores 2017−2030; Documento de contexto para informar las deliberaciones de la Asamblea Mundial de la Salud en su 70.a reunion. https://www.who.int/malaria/areas/vectorcontrol/Draft-WHO-GVCR-2017-2030-esp.pdf

Organizacion Panamericana de la Salud (OPS). (2017). Diez enfermedades transmitidas por vectores queponen en riesgo a la poblacion de las Americas. 2017. http://www.paho.org/hq/index.php?option=comcontentview=articleid=9438 %3A2014-10-vector-borne-diseases-that-put-population-americas-at-riskcatid=1443 %3Aweb-bulletinsItemid=135lang=es

Parra, H., Garc ́ıa, P., & Cortes, T. (2007). Actividad insecticida de extractos vegetales sobre Aedes aegypti (Diptera:Culicidae) vector del dengue en Colombia. CES Medicina, 21(1), 47−54.https://revistas.ces.edu.co/index.php/medicina/article/view/34

Prophiro, J., Rossi, J., Pedroso, M., Kanis, L., & Silva, O.(2008). Leaf extracts ofMelia azedarach Linnaeus(Sa-pindales: Meliaceae) actas larvicide against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Revista da Sociedade Brasileira de Medicina Tropical, 41(6), 560−564.http://dx.doi.org/10.1590/S0037-86822008000600003

R Core Team. (2020). R: A language and environment forstatistical computing. R Foundation for Statistical Computing, Vienna, Austria.https://www.r-project.org/

Rieser, J., Kozlowski, F., Wood, V., & McLaughlin, L. (1991).Muricatacin: A simple biologically active acetogenin deri-vative from the seeds ofAnnona muricata(annonaceae).Tetrahedron Letters, 32(9), 1137−1140.https://doi.org/10.1016/S0040-4039(00)92027-6

Ritchie, S., Rapley, L., & Benjamin, S. (2010). Bacillus thurin-giensis subsp. israelensis (Bti) provides residual control of Aedes aegyptiin small containers.The American Journal of Tropical Medicine and Hygiene, 82(6), 1053−1059.https://doi.org/10.4269/ajtmh.2010.09-0603

Rodrıguez, M., Bisset, J., Dıaz, C., & Lazaro, A.(2003). Resistencia cruzada a piretroides enAedesaegyptide Cuba inducido por la seleccion conel insecticida organofosforado malati ́on.RevistaCubana de Medicina Tropical, 55(2), 105−111.http://scielo.sld.cu/scielo.php?script=sciarttext&pid=S0375-07602003000200008&lng=es&tlng=es

Rodrıguez, M. M., Bisset, J. A., Ricardo, Y., Perez, O.,Montada, D., Figueredo, D., & Fuentes, I. (2010). Resistencia a insecticidas organofosforados en Aedes aegypti (Diptera: Culicidae) de Santiago de Cuba, 1997-2009.Revista Cubana de Medicina Tropical, 62(3), 217−223.http://scielo.sld.cu/scielo.php?script=sciarttext&pid=S0375-07602010000300009&lng=es&tlng=es

Rojas, M., Araujo, P., & Montero, T. (2015) Evaluacion del uso de Sapindus saponariacomo biocida deAedes aegyptien condiciones in vitro. Produccion + Limpia, 10(2),11−17.http://www.scielo.org.co/scielo.php?script=sciarttext&pid=S1909-04552015000200002&lng=en&tlng=es

Rupprecht, J., Hui, Y., & McLaughlin, J. (1990). Annona-ceous acetogenins: A review.Journal of Natural Products,53(2), 237−278.https://doi.org/10.1021/np50068a001

Sharma, J., Qadry, B., Subramanium, T., Verghese, S., Rah-man, S., & Jalees, S. (1998). Larvicidal activity of Gliricidia sepiumagainst mosquito larvae of Anopheles stephansi, Aedes aegypti and Culex quinquefasciatus. Pharmaceutical Biology, 36(1), 3−7. https://doi.org/10.1076/phbi.36.1.3.4616

Silva-Filha, M., Rom ̃ao, T., Rezende, T., Carvalho, K., Gouveiade Menezes, H., Alexandre do Nascimento, N., Sober ́on,M., & Bravo, A. (2021). Bacterial toxins active againstmosquitoes: Mode of action and resistance.Toxins, 13(1),523. https://doi.org/10.3390/toxins13080523

Soborio, C., Mora, V., & Duran, M. (2019). Intoxicaci ́on pororganofosforados.Medicina Legal de Costa Rica, 36(1),110−117.

http://www.scielo.sa.cr/scielo.php?script=sciarttext&pid=S1409-00152019000100110&lng=en&tlng=es

Somoza, C., Hernandez, V., Peña, G., Torres, G., Huerta,A., Ortega, L., & Salazar, J. (2018). Interaction of Beauveria bassiana strain HPI-019/14 and Bacillus thuringiensis strain GP139 for the biological control of Bemisia tabaciin strawberry. Bulletin of Insectology, 71(2), 201−209. http://www.bulletinofinsectology.org/pdfarticles/vol71-2018-201-209somoza-vargas.pdf

Vieira-Neta, M., Soares-da-Silva, J., Viana, J. L., Silva, M. C.,Tadei, W. P., & Pinheiro, V. (2021). Strain of Bacillus thuringiensis from Restinga, toxic to Aedes (Stegomyia) aegypti (Linnaeus) (Diptera, Culicidae). Brazilian Journal of Biology, 81(4), 872−880. https://doi.org/10.1590/1519-6984.228790

Published

2022-05-16

How to Cite

Sanabria Jimenez, S., & Lozano, L. C. (2022). Larvicidal activity of Bacillus thuringiensis subsp. israelensis (Bacillaceae) and plant extracts for the biological control of Aedes aegypti (Culicidae). Actualidades Biológicas, 44(117), 1–8. https://doi.org/10.17533/udea.acbi.v44n117a05

Issue

Section

Full articles