Assessment of the potential of native yeast isolated from industrial residual waters in the removal of azoic dyes

Authors

  • Manuela Bolivar-Correa University of Antioquia
  • Ana Maria Gaviria-Villa University of Antioquia
  • Lina Maria Lopez-de Avila University of Antioquia

DOI:

https://doi.org/10.17533/udea.acbi/v45n118a04

Keywords:

bioremediation, biosorption, Hanseniaspora

Abstract

Azo dyes, widely used in the textile industry, release contaminating effluents that affect different organisms due to their toxicity and recalcitrant nature. Recognizing the role of yeasts in the bioremediation of different contaminated environments, the objective of this study was to evaluate the potential of native yeasts isolated from contaminated water sources in the removal of the azo dye Novasyn blue light BLR. We isolated 15 yeast colonies able to grow in the presence of Novasyn blue light BLR dye and determined their ability to remove the dye in a synthetic medium, obtaining colonies with removal percentages greater than 60%. We selected one colony, MA011, identified as Hanseniaspora opuntinae, to evaluate the effect of the culture media composition, pH, and dye concentration on the removal capacity of the yeast. The results showed that dye concentration and pH have a significant effect on the removal percentage. In addition, differing dye concentrations on the growth and removal capacity of H. opuntinae were evaluated, with a toxic effect of the dye not observed up to 2000 ppm. However, we found that high dye concentrations decreased the removal capacity of the yeast. Finally, we evaluated the removal capacity of H. opuntinae in wastewater, observing no changes in the spectrophotometric profile of the dye before and after the interaction with the yeast, suggesting that dye removal by H. opuntinae occurs by biosorption.

|Abstract
= 724 veces | PDF
= 105 veces| | PDF (ESPAÑOL (ESPAÑA))
= 475 veces| | HTML
= 41 veces| | XML
= 2 veces| | RESUMEN GRÁFICO (ESPAÑOL (ESPAÑA))
= 24 veces|

Downloads

Download data is not yet available.

Author Biographies

Manuela Bolivar-Correa, University of Antioquia

Grupo de Biotransformación, Universidad de Antioquia, Medellín, Colombia.

Ana Maria Gaviria-Villa, University of Antioquia

Grupo de Biotransformación, Universidad de Antioquia, Medellín, Colombia.

Lina Maria Lopez-de Avila, University of Antioquia

Grupo de Biotransformación, Universidad de Antioquia, Medellín, Colombia.

References

Aksu, Z. (2003). Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochemistry, 38(10), 1437–1444. https://doi.org/10.1016/s0032-9592(03)00034-7

Aksu, Z., & Dönmez, G. (2001). Comparison of copper (II) biosorptive properties of live and treated Candida sp. Journal of Environmental Science and Health, Part A, 36(3), 367–381. https://doi.org/10.1081/ese-100102928

Aksu, Z., & Dönmez, G. (2005). Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochemistry, 40(7), 2443–2454. https://doi.org/ 10.1016/j.procbio.2004.09.013

Al-Tohamy, R., Kenawy, E. -R., Sun, J., & Ali, S. S. (2020). Performance of a Newly Isolated Salt-Tolerant Yeast Strain Sterigmatomyces halophilus SSA-1575 for Azo Dye Decolorization and Detoxification. Frontiers in Microbiology, 11, 1163. https://doi.org/10.3389/fmicb.2020.01163

Bankole, P. O., Adekunle, A. A., Obidi, O. F., Olukanni, O. D., & Govindwar, S. P. (2017). Degradation of indigo dye by a newly isolated yeast Diutina rugosa from dye wastewater polluted soil. Journal of Environmental Chemical Engineering, 5(5), 4639–4648. https://doi.org/10.1016/j.jece.2017.08.050

Barreda, K. L., Ortega, J., Ortega, A. E., Santiago, L. A., & Netzahuatl, A. R. (2015). Remoción de azul brillante de remazol R de soluciones acuosas empleando biomasa de levadura. Revista Cubana de Química, 27(2), 182–196.

Carballo, M. E., Martínez, A., Salgado, I., Maldener, I., Alvarez, M., Boza, A., & Arias, M. C. (2012). Capacidad de captura de cadmio y cinc por bacterias, microalgas y levaduras. Revista Cubana de Ciencias Biológicas, 1(1), 34–43.

Chen, S. H., & Ting, A. S. (2015). Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. Journal of Environmental Management, 150, 274–280. https://doi.org/10.1016/j.jenvman.2014.09.014

Chequer, F. M., Angeli, J. P., Ferraz, E. R, Tsuboy, M. S., Marcarini, J. C., Mantovani, M. S., & de Oliveira, D. P. (2009). The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 676(1-2), 83–86. https://doi.org/10.1016/j.mrgentox.2009.04.004

Figueroa, C., Mota, J., Ferrocino, I., Hernández, Z., González, O., Cocolin, L., & Suárez, M. L. (2019). The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. International Journal of Food Microbiology, 301, 41–50. https://doi.org/10.1016/j.ijfoodmicro.2019.05.002

Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

Giovanella, P., Vieira, G. A. L., Ramos Otero, I. V., Pellizzer, E., de Jesus Fontes, B., & Sette, L. D. (2019). Metal and organic pollutants bioremediation by extremophile microorganisms. Journal of Hazardous Materials, 382, 121024. https://doi.org/10.1016/j.jhazmat.2019.121024

Gomi, N., Yoshida, S., Matsumoto, K., Okudomi, M., Konno, H., Hisabori, T., & Sugano, Y. (2011). Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products. Biodegradation, 22(6), 1239–1245. https://doi.org/10.1007/s10532-011-9478-9

Gschaedler, A. (2017). Contribution of non-conventional yeasts in alcoholic beverages. Current Opinion in Food Science, 13, 73–77. https://doi.org/10.1016/j.cofs.2017.02.004

Guo, G., Tian, F., Zhao, Y., Tang, M., Liu, w., Liu, C., Xue, S., Kong, W., Sun, Y., & Wang, S. (2019). Aerobic decolorization and detoxification of Acid Scarlet GR by a newly isolated salt-tolerant yeast strain Galactomyces geotrichum GG. International Biodeterioration & Biodegradation, 145, 104818. https://doi.org/ 10.1016/j.ibiod.2019.104818

Imran, M., Crowley, D. E., Khalid, A., Hussain, S., Mumtaz, M. W., & Arshad, M. (2014). Microbial biotechnology for decolorization of textile wastewaters. Reviews in Environmental Science and Bio/Technology, 14(1), 73–92. https://doi.org/10.1007/s11157-014-9344-4

Jafari, N., Kasra-Kermanshahi, R., & Soudi, M. R. (2013). Screening, identification and optimization of a yeast strain, Candida palmioleophila JKS4, capable of azo dye decolorization. Iranian journal of microbiology, 5(4), 434–440.

Joshi, M. (2004). Colour removal from textile effluents. Indian Journal of Fibre and Textile Research, 29(2), 239–259.

Khan, R., Bhawana, P., & Fulekar, M. H. (2012). Microbial decolorization and degradation of synthetic dyes: a review. Reviews in Environmental Science and Bio/Technology, 12(1), 75–97. https://doi.org/10.1007/s11157-012-9287-6

Kurade, M. B., Waghmode, T. R., Xiong, J. -Q., Govindwar, S. P., & Jeon, B. -H. (2019). Decolorization of textile industry effluent using immobilized consortium cells in upflow fixed bed reactor. Journal of Cleaner Production, 213, 884–891. https://doi.org/10.1016/j.jclepro.2018.12.218

Liu, J., Shi, P., Ahmad, S., Yin, C., Liu, X., Liu, Y., Zhang, H., Xu, Q., Yan, H., & Li, Q. (2019). Co-culture of Bacillus coagulans and Candida utilis efficiently treats Lactobacillus fermentation wastewater. AMB Express, 9(1), 15. https://doi.org/10.1186/s13568-019-0743-3

Mahmoud, M. S. (2016). Decolorization of certain reactive dye from aqueous solution using Baker’s Yeast (Saccharomyces cerevisiae) strain. HBRC Journal, 12(1), 88–98. https://doi.org/10.1016/j.hbrcj.2014.07.005

Martínez, C. A., & Brillas, E. (2009). Descontaminación de aguas residuales que contienen colorantes orgánicos sintéticos por métodos electroquímicos: una revisión general. Catálisis aplicada B: Ambiental, 87(3-4), 105–145.

Pajot, H. F., Martorell, M. M., & de Figueroa, L. I. (2014). Ecology of Dye Decolorizing Yeasts. Bioremediation in Latin America (223–240). Springer, Cham. https://doi.org/10.1007/978-3-319-05738-5_14

Pazarlioglu, N. K., Urek, R. O., & Ergun, F. (2005). Biodecolourization of Direct Blue 15 by immobilized Phanerochaete chrysosporium. Process Biochemistry, 40(5), 1923–1929. https://doi.org/10.1016/j.procbio.2004.07.005

Posada, M. L., & Pulido, J. A. (2011). Evaluación de la degradación de un colorante directo utilizado en la industria textil usando la tecnología de oxidación fotocatalítica heterogénea. [Tesis de Pregrado] Universidad de La Salle, Bogotá. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/502

Qu, Y., Cao, X., Ma, Q., Shi, S., Tan, L., Li, X., & Zhou, J. (2012). Aerobic decolorization and degradation of Acid Red B by a newly isolated Pichia sp. TCL. Journal of Hazardous Materials, 223-224, 31–38. https://doi.org/10.1016/j.jhazmat.2012.04.034

Roșu, C. M., Vochița, G., Mihășan, M., Avădanei, M., Mihai, C. T., & Gherghel, D. (2018). Performances of Pichia kudriavzevii in decolorization, biodegradation, and detoxification of C.I. Basic Blue 41 under optimized cultural conditions. Environmental Science and Pollution Research, 26, 431–445. https://doi.org/10.1007/s11356-018-3651-1

Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2009). Ecofriendly degradation of sulfonated diazo dye C.I. Reactive Green 19A using Micrococcus glutamicus NCIM-2168. Bioresource Technology, 100(17), 3897–3905. https://doi.org/10.1016/j.biortech.2009.03.051

Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138–157. https://doi.org/10.1016/j.jtice.2010.06.006

Sarmiento, M. D. (2017). Construcción y optimización de soportes bioactivos sostenibles para la degradación de colorantes. [Tesis de pregrado] Universidad Miguel Hernández, Elche, España. http://dspace.umh.es/handle/11000/3545?mode=full

Sathishkumar, K., AlSalhi, M. S., Sanganyado, E., Devanesan, S., Arulprakash, A., & Rajasekar, A. (2019). Sequential electrochemical oxidation and bio-treatment of the azo dye Congo red and textile effluent. Journal of Photochemistry and Photobiology B: Biology, 200, 111655. https://doi.org/10.1016/j.jphotobiol.2019.111655

Sinha, A., Lulu, S., Vino, S., Banerjee, S., Acharjee, S., & Osborne, W. J. (2018). Degradation of reactive green dye and textile effluent by Candida sp. VITJASS isolated from wetland paddy rhizosphere soil. Journal of Environmental Chemical Engineering, 6(4), 5150–5159. https://doi.org/10.1016/j.jece.2018.08.004

Song, L., Shao, Y., Ning, S., & Tan, L. (2017). Performance of a newly isolated salt-tolerant yeast strain Pichia occidentalis G1 for degrading and detoxifying azo dyes. Bioresource Technology, 233, 21–29. https://doi.org/10.1016/j.biortech.2017.02.065

Surwase, S. V., Deshpande, K. K., Phugare, S. S., & Jadhav J. P. (2013). Biotransformation studies of textile dye Remazol Orange 3R. 3 Biotech, 3(4), 267–275. https://doi.org/10.1007/s13205-012-0093-1.

Tan, L., Ning, S., Zhang, X., & Shi, S. (2013). Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1. Bioresource Technology, 138, 307–313. https://doi.org/10.1016/j.biortech.2013.03.183

Tan, L., Li, H., Ning, S., & Xu, B. (2014). Aerobic decolorization and degradation of azo dyes by suspended growing cells and immobilized cells of a newly isolated yeast Magnusiomyces ingens LH-F1. Bioresource Technology, 158, 321–328. https://doi.org/10.1016/j.biortech.2014.02.063

Tan, L., He, M., Song, L., Fu, X., & Shi, S. (2016). Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. Bioresources Technologies, 203, 287–294. https://doi.org/10.1016/j.biortech.2015.12.058.

Volesky, B., & May-Phillips, H. A. (1995). Biosorption of heavy metals by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 42(5), 797–806. https://doi.org/ 10.1007/BF00171964

Wang, X., Wang, Y., Ning, S., Shi, S., & Tan L. (2020). Improving azo dye decolorization performance and halotolerance of Pichia occidentalis A2 by static magnetic field and possible mechanisms through comparative transcriptome analysis. Frontiers in Microbiology, 11, 712. https://doi.org/10.3389/fmicb.2020.00712.7/bf00171964

Yu, J.-X., Li, B.-H., Sun, X.-M., Yuan, J., & Chi, R. (2009). Polymer modified biomass of baker’s yeast for enhancement adsorption of methylene blue, rhodamine B and basic magenta. Journal of Hazardous Materials, (2-3), 1147–1154. https://doi.org/10.1016/j.jhazmat.2009.02.144

Zabłocka, E., & Przystaś, W. (2020). Fed-Batch Decolourization of Mixture of Brilliant Green and Evans Blue by Bacteria Species Applied as Pure and Mixed Cultures: Influence of Growth Conditions. Water, Air, & Soil Pollution, 231(2). https://doi.org/10.1007/s11270-020-4441-1

Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252, 352–365. https://doi.org/10.1016/j.envpol.2019.05.072

Zuleta, A. (2013). Evaluación del proceso de degradación de un colorante sintético tipo azo mediante un sistema de fermentación en estado sólido. [Tesis de doctorado] Universidad Nacional de Colombia, Bogotá. https://repositorio.unal.edu.co/handle/unal/20933

Published

2022-11-17

How to Cite

Bolivar-Correa, M., Gaviria-Villa, A. M., & Lopez-de Avila, L. M. (2022). Assessment of the potential of native yeast isolated from industrial residual waters in the removal of azoic dyes. Actualidades Biológicas, 45(118), 1–13. https://doi.org/10.17533/udea.acbi/v45n118a04

Issue

Section

Full articles