Inferring the effect of abiotic factors on body temperature and water loss on agar models of the Sabanera frog (Dendropsophus molitor) in Cajicá- Cundinamarca

Authors

  • Estefany Acosta L Militar University of New Granada
  • Diana Galindo-Uribe Pontifical Bolivarian University https://orcid.org/0000-0002-5721-411X
  • Faidith Bracho-Altamiranda University of Antioquia
  • Nelsy Rocio Pinto-Sánchez Militar University of New Granada

DOI:

https://doi.org/10.17533/udea.acbi/v45n118a06

Keywords:

amphibians, Colombia, dew point, substrate temperature, thermal ecology

Abstract

Amphibians have physiological restrictions on the permeability of their skin due to a high probability of dehydration by evapotranspiration in environments with high temperatures and low water availability. Dendropsophus molitor is a semi-aquatic species with basking behavior that uses thermoregulatory mechanisms to carry out their vital processes. Therefore, our objective was to evaluate the effect of environmental variables, microhabitat type, and color on body temperature and water loss in D. molitor. We used agar models with two color patterns placed in two types of microhabitats (wet and dry), each with two conditions (sun and shade), and measured the percentage of weight change and body temperature. We used statistical analyzes such as correlation, linear mixed effects models, and the variance inflation factor method. In our study, the color of the agar models was not significant. However, the variables dew point, relative humidity, solar radiation, substrate temperature, and microhabitat each affected the percentage of weight change and body temperature. Both variables increased between the dry and sun microhabitat conditions and the dry and shaded conditions between 12:00 and 16:00 hours. Evapotranspiration is closely related to radiation, and the vapor pressure deficit is relevant to amphibian body temperature because they cool by the evapotranspiration of water through their skin. Finally, variables at the microhabitat level are vital for these species and should be incorporated into this kind of work.

|Abstract
= 1256 veces | PDF
= 176 veces| | PDF (ESPAÑOL (ESPAÑA))
= 652 veces| | HTML
= 6 veces| | XML
= 7 veces| | RESUMEN GRÁFICO (ESPAÑOL (ESPAÑA))
= 38 veces|

Downloads

Download data is not yet available.

Author Biographies

Estefany Acosta L, Militar University of New Granada

Semillero de Evolución y Conservación, Grupo de Ecotoxicología, Evolución, Medio Ambiente Conservación, Programa de Biología Aplicada,Universidad Militar Nueva Granada, Cajicá, Colombia.

Diana Galindo-Uribe, Pontifical Bolivarian University

Facultad de Ciencias, Departamento de Biología, Pontificia Universidad Javeriana, Bogotá, Colombia.

Faidith Bracho-Altamiranda, University of Antioquia

Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.

Nelsy Rocio Pinto-Sánchez, Militar University of New Granada

Semillero de Evolución y Conservación, Grupo de Ecotoxicología, Evolución, Medio Ambiente Conservación, Programa de Biología Aplicada,Universidad Militar Nueva Granada, Cajicá, Colombia.

References

Alveal-Riquelme, N. F. (2015). Relaciones entre la fisiología térmica y las características bioclimáticas de Rhinella spinulosa (Anura: Bufonidae) en Chile a través del enlace mecanicista de nicho térmico [Tesis de Maestría]. Universidad Concepción, Concepción. Repositorio UDEC. http://repositorio.udec.cl/jspui/handle/11594/1797

Amézquita, A. (1999). Color pattern, elevation and body size in the high andean frog Hyla labialis. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23, 231–238. https://www.accefyn.com/revista/Vol_23/supl/231-238.pdf

Angarita-Cañón, F.A. (2014). Efecto del ambiente de cultivo y la densidad de siembra sobre la productividad de dos materiales de romero (Rosmarinus officinalis L) israelí y crespo, en Cajicá –Colombia [Tesis de pregrado]. Universidad Militar Nueva Granada, Bogotá. Repositorio UMNG. https://repository.unimilitar.edu.co/handle/10654/13934

Angilletta, M. J., Cooper, B. S., Schuler, M. S., & Boyles, J. G. (2010). The evolution of thermal physiology in endotherms. Frontiers in bioscience, 2, 861–881. https://doi.org/10.2741/e148

Bates, D., Martin, M., Bolker, B., & Walker, S. (2019). Fitting Linear Mixed-Effects Models Using lme4. Statistical software magazine, 67(1), 1–48. https://www.jstatsoft.org/article/view/v067i01

Brattstrom, B. H. (1979). Amphibian temperature regulation studies in the field and laboratory. American Zoologist, 19(1), 345–356. https://doi.org/10.1093/icb/19.1.345

Carey, C. (1978). Factors affecting body temperatures of toads. Oecologia, 35(2), 197–219. https://doi.org/10.1007/BF00344732

Corn, P. S. (2005). Climate change and amphibians. Animal Biodiversity and Conservation, 28, 59–67. https://www.raco.cat/index.php/ABC/article/view/56740/66502

Guarnizo, C. E., Armesto, O., & Acevedo, A. (2014). Dendropsophus labialis. Catálogo de Anfibios y Reptiles de Colombia (pp. 56-61). Medellín, Colombia: Universidad de Antioquia. https://www.researchgate.net/publication/265014754_Dendropsophus_labialis_Catalogo_de_Anfibios_y_Reptiles_de_Colombia

Kaufmann, K., & Dohmen, P. (2016). Adaption of a dermal in vitro method to investigate the uptake of chemicals across amphibian skin. Environmental Sciences Europe, 28(10), 1–13. https://doi.org/10.1186/s12302-016-0080-y

Köhler, A., Sadowska, J., Olszewska, J., Trzeciak, P., Berger, O., & Tracy, C. (2011). Staying warm or moist? Operative temperature and thermal preferences of common frogs (Rana temporaria), and effects on locomotion. The Herpetological Journal, 21, 17–26. http://hdl.handle.net/2263/19493

Korkmaz, S., Goksuluk, D., & Zararsiz, G. (2014). MVN: An R Package for Assessing Multivariate Normality. The R Journal, 6(2), 151–162. https://journal.r-project.org/archive/2014-2/korkmaz-goksuluk-zararsiz.pdf

Leyte-Manrique, A., González-García, R. L. E., Quintero-Díaz, G. E., Alejo-Iturvide, F., & Berriozabal-Islas, C. (2018). Aspectos ecológicos de una comunidad de anuros en un ambiente tropical estacional en Guanajuato, México. Acta zoológica mexicana, 34, 1–14. https://www.redalyc.org/articulo.oa?id=57560238046

Lillywhite, H. B. (2006). Water relations of tetrapod integument. Journal of Experimental Biology, 209(2), 202–226. https://doi.org/10.1242/jeb.02007

Maldonado-Castro, G. A. (2017). Tasas de pérdida de agua por evapotranspiración en dos especies de anfibios ecuatorianos con hábitos ecológicos diferentes: Hypsiboas cinerascens (Anura: Hylidae) y Pristimantis unistrigatus (Anura: Craugastoridae) [Tesis de pregrado]. Pontificia Universidad Católica del Ecuador, Quito. Repositorio PUCE. http://repositorio.puce.edu.ec/handle/22000/13209

Martines, E., & Lira, L. (2008). Cálculo de la Temperatura de Punto de Rocío a Diferentes Valores de Presión. Santiago de Querétaro: Centro Nacional de Metrología. Simposio de Metrología, 22, 1–5. ps://www.cenam.mx/simposio2008/sm_2008/memorias/M1/SM2008-M117-1098.pdf

Méndez-Narváez, J. (2014). Diversidad de anfibios y reptiles en hábitats altoandinos y paramunos de la cuenca del río Fúquene. Biota Colombiana, 15, 94–103. http://revistas.humboldt.org.co/index.php/biota/article/view/310/308

Mitchell, A., & Bergmann, P. J. (2016). Thermal and moisture habitat preferences do not maximize jumping performance in frogs. Functional Ecology, 30, 733–742. tps://doi.org/10.1111/1365-2435.12535

Navas, C. A. (1996a). Implications of microhabitat selection and patterns of activity on the thermal ecology of high elevation neotropical anurans. Oecologia, 108, 617–626. https://doi.org/10.1007/BF00329034

Navas, C. A. (1996b). Metabolic physiology, locomotor performance, and thermal niche breadth in neotropical anurans. Physiological Zoology, 69(6), 1481–1501. http://www.jstor.org/stable/30164271

Navas, C. A. (2006). Patterns of distribution of anurans in high Andean tropical elevations: insights from integrating biogeography and evolutionary physiology. Integrative and comparative Biology, 46(1), 82–91. https://doi.org/10.1093/icb/icj001

Navas, C. A., & Araujo, C. (2000). The Use of Agar Models to Study Amphibian Thermal Ecology. Journal of Herpetology, 34(2), 330–334. https://doi.org/10.2307/1565438

Navas, C. A., Carvajalino-Fernández, J. M., Saboyá-Acosta, L. P., Rueda-solano, L. A., & Carvajalino-Fernández, M. A. (2013). The body temperature of active amphibians along a tropical elevation gradient: patterns of mean and variance and inference from environmental data. Functional Ecology, 27, 1145–1154. https://doi.org/10.1111/1365-2435.12106

Navas, C. A., Gomes, F. R., & Carvalho, J. E. (2008). Thermal relationships and exercise physiology in anuran amphibians: Integration and evolutionary implications. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151(3), 344–362. https://doi.org/10.1016/j.cbpa.2007.07.003

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Wagner, H., & Oksanen, M. J. (2013). Package ‘vegan’. Community ecology package, version, 2(9), 1-295. https://cran.r-project.org/web/packages/vegan/vegan.pdf

Percino-Daniel, R., Contreras López, J. M., Téllez-Valdés, O., Méndez de la Cruz, F. R., Gonzalez-Voyer, A., & Piñero, D. (2021). Environmental heterogeneity shapes physiological traits in tropical direct–developing frogs. Ecology and evolution, 11(11), 6688–6702. https://doi.org/10.1002/ece3.7521

R Core Team. (2021). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Romero-Barreto, P. G. (2013). Requerimientos fisiológicos y microambientales de dos especies de anfibios (Scinax ruber e Hyloxalus yasuni) del bosque tropical de Yasuní y sus implicaciones ante el cambio climático [Tesis de pregrado]. Pontificia Universidad Católica del Ecuador, Quito. Repositorio PUCE. http://repositorio.puce.edu.ec/handle/22000/5726

Rueda-Solano, L. A., Navas, C., Carvajalino-Fernández, J., & Amézquita, A. (2016). Thermal ecology of montane Atelopus (anura: bufonidae): a study of intrageneric diversity. Journal of Thermal Biology, 58, 91–98. https://doi.org/10.1016/j.jtherbio.2016.04.007

Sanabria, E. A., Quiroga, L. B., & Acosta, J. C. (2003). Relación entre la temperatura corporal de adultos de Bufo arenarum (Anura: Bufonidae) y variables ambientales en un humedal de San Juan, Argentina. Multequina, 12, 49–53 https://www.redalyc.org/articulo.oa?id=42801205

Shoemaker, V. H., & McClanahan, L. L. (1975). Evaporative water loss, nitrogen excretion and osmoregulation in phyllomedusine frogs. Journal of comparative physiology, 100(4), 331–345. https://doi.org/10.1007/BF00691053

Sinervo, B., Jiménez, O., & Luja, V.H. (2012). Protocol for the construction of agar models for amphibian ecophysiology experiments. Santa Cruz. University of California, Santa Cruz.

Spotila, J. R., & Berman, E. N. (1976). Determination of skin resistance and the role of the skin in controlling water loss in amphibians and reptiles. Comparative Biochemistry and Physiology Part A: Physiology, 55(4), 407–411. https://doi.org/10.1016/0300-9629(76)90069-4

Tattersall, G. J., Eterovick, P. C., & Andrade, D. V. D. (2006). Tribute to R. G. Boutilier: skin colour and body temperature changes in basking Bokermannohyla alvarengai (Bokermann 1956). The Journal of experimental biology, 209, 1185–1196. https://doi.org/10.1242/jeb.02038

Trujillo-Pérez, M. M. (2017, Julio 10). Estación Meteorológica. Aula virtual de la Universidad Militar Nueva Granada. http://virtual2.umng.edu.co/moodle/course/view.php?id=3217

Valdivieso, D. & Tamsitt, J. R. (1974). Thermal Relations of the Neotropical Frog D. labialis (Anura: Hylidae). Royal Ontario Museum, 26, 1–15. https://www.biodiversitylibrary.org/item/123483#page/5/mode/1up

Whitlock, M. C., & Schluter, D. (2015). The analysis of biological data (2ª ed.). Roberts Publishers. https://www.academia.edu/43317940/The_Analysis_of_Biological_Data_Second_Edition

Withers, P. C. (1995). Evaporative water loss and colour change in the Australian desert tree frog Litoria rubella (Amphibia: Hylidae). Records of the Western Australian Museum, 17, 277–281. https://biostor.org/reference/239479

Wygoda, M. L., & Williams, A. A. (1991). Body temperature in free-ranging green tree frogs (Hyla cinerea): A comparison with" typical" frogs. Herpetologica, 47(3), 328–335. http://www.jstor.org/stable/3892625

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in ecology and evolution, 1(1), 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Journal of Statistical Software, Book Reviews, 32(1), 1–3. https://doi.org/10.18637/jss.v032.b0

Published

2022-11-17

How to Cite

Acosta Lugo, E., Galindo-Uribe, D. M., Bracho-Altamiranda, F., & Pinto-Sánchez, N. R. (2022). Inferring the effect of abiotic factors on body temperature and water loss on agar models of the Sabanera frog (Dendropsophus molitor) in Cajicá- Cundinamarca. Actualidades Biológicas, 45(118), 1–16. https://doi.org/10.17533/udea.acbi/v45n118a06

Issue

Section

Full articles