Inferring the effect of abiotic factors on body temperature and water loss on agar models of the Sabanera frog (Dendropsophus molitor) in Cajicá- Cundinamarca
DOI:
https://doi.org/10.17533/udea.acbi/v45n118a06Keywords:
amphibians, Colombia, dew point, substrate temperature, thermal ecologyAbstract
Amphibians have physiological restrictions on the permeability of their skin due to a high probability of dehydration by evapotranspiration in environments with high temperatures and low water availability. Dendropsophus molitor is a semi-aquatic species with basking behavior that uses thermoregulatory mechanisms to carry out their vital processes. Therefore, our objective was to evaluate the effect of environmental variables, microhabitat type, and color on body temperature and water loss in D. molitor. We used agar models with two color patterns placed in two types of microhabitats (wet and dry), each with two conditions (sun and shade), and measured the percentage of weight change and body temperature. We used statistical analyzes such as correlation, linear mixed effects models, and the variance inflation factor method. In our study, the color of the agar models was not significant. However, the variables dew point, relative humidity, solar radiation, substrate temperature, and microhabitat each affected the percentage of weight change and body temperature. Both variables increased between the dry and sun microhabitat conditions and the dry and shaded conditions between 12:00 and 16:00 hours. Evapotranspiration is closely related to radiation, and the vapor pressure deficit is relevant to amphibian body temperature because they cool by the evapotranspiration of water through their skin. Finally, variables at the microhabitat level are vital for these species and should be incorporated into this kind of work.
Downloads
References
Alveal-Riquelme, N. F. (2015). Relaciones entre la fisiología térmica y las características bioclimáticas de Rhinella spinulosa (Anura: Bufonidae) en Chile a través del enlace mecanicista de nicho térmico [Tesis de Maestría]. Universidad Concepción, Concepción. Repositorio UDEC. http://repositorio.udec.cl/jspui/handle/11594/1797
Amézquita, A. (1999). Color pattern, elevation and body size in the high andean frog Hyla labialis. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23, 231–238. https://www.accefyn.com/revista/Vol_23/supl/231-238.pdf
Angarita-Cañón, F.A. (2014). Efecto del ambiente de cultivo y la densidad de siembra sobre la productividad de dos materiales de romero (Rosmarinus officinalis L) israelí y crespo, en Cajicá –Colombia [Tesis de pregrado]. Universidad Militar Nueva Granada, Bogotá. Repositorio UMNG. https://repository.unimilitar.edu.co/handle/10654/13934
Angilletta, M. J., Cooper, B. S., Schuler, M. S., & Boyles, J. G. (2010). The evolution of thermal physiology in endotherms. Frontiers in bioscience, 2, 861–881. https://doi.org/10.2741/e148
Bates, D., Martin, M., Bolker, B., & Walker, S. (2019). Fitting Linear Mixed-Effects Models Using lme4. Statistical software magazine, 67(1), 1–48. https://www.jstatsoft.org/article/view/v067i01
Brattstrom, B. H. (1979). Amphibian temperature regulation studies in the field and laboratory. American Zoologist, 19(1), 345–356. https://doi.org/10.1093/icb/19.1.345
Carey, C. (1978). Factors affecting body temperatures of toads. Oecologia, 35(2), 197–219. https://doi.org/10.1007/BF00344732
Corn, P. S. (2005). Climate change and amphibians. Animal Biodiversity and Conservation, 28, 59–67. https://www.raco.cat/index.php/ABC/article/view/56740/66502
Guarnizo, C. E., Armesto, O., & Acevedo, A. (2014). Dendropsophus labialis. Catálogo de Anfibios y Reptiles de Colombia (pp. 56-61). Medellín, Colombia: Universidad de Antioquia. https://www.researchgate.net/publication/265014754_Dendropsophus_labialis_Catalogo_de_Anfibios_y_Reptiles_de_Colombia
Kaufmann, K., & Dohmen, P. (2016). Adaption of a dermal in vitro method to investigate the uptake of chemicals across amphibian skin. Environmental Sciences Europe, 28(10), 1–13. https://doi.org/10.1186/s12302-016-0080-y
Köhler, A., Sadowska, J., Olszewska, J., Trzeciak, P., Berger, O., & Tracy, C. (2011). Staying warm or moist? Operative temperature and thermal preferences of common frogs (Rana temporaria), and effects on locomotion. The Herpetological Journal, 21, 17–26. http://hdl.handle.net/2263/19493
Korkmaz, S., Goksuluk, D., & Zararsiz, G. (2014). MVN: An R Package for Assessing Multivariate Normality. The R Journal, 6(2), 151–162. https://journal.r-project.org/archive/2014-2/korkmaz-goksuluk-zararsiz.pdf
Leyte-Manrique, A., González-García, R. L. E., Quintero-Díaz, G. E., Alejo-Iturvide, F., & Berriozabal-Islas, C. (2018). Aspectos ecológicos de una comunidad de anuros en un ambiente tropical estacional en Guanajuato, México. Acta zoológica mexicana, 34, 1–14. https://www.redalyc.org/articulo.oa?id=57560238046
Lillywhite, H. B. (2006). Water relations of tetrapod integument. Journal of Experimental Biology, 209(2), 202–226. https://doi.org/10.1242/jeb.02007
Maldonado-Castro, G. A. (2017). Tasas de pérdida de agua por evapotranspiración en dos especies de anfibios ecuatorianos con hábitos ecológicos diferentes: Hypsiboas cinerascens (Anura: Hylidae) y Pristimantis unistrigatus (Anura: Craugastoridae) [Tesis de pregrado]. Pontificia Universidad Católica del Ecuador, Quito. Repositorio PUCE. http://repositorio.puce.edu.ec/handle/22000/13209
Martines, E., & Lira, L. (2008). Cálculo de la Temperatura de Punto de Rocío a Diferentes Valores de Presión. Santiago de Querétaro: Centro Nacional de Metrología. Simposio de Metrología, 22, 1–5. ps://www.cenam.mx/simposio2008/sm_2008/memorias/M1/SM2008-M117-1098.pdf
Méndez-Narváez, J. (2014). Diversidad de anfibios y reptiles en hábitats altoandinos y paramunos de la cuenca del río Fúquene. Biota Colombiana, 15, 94–103. http://revistas.humboldt.org.co/index.php/biota/article/view/310/308
Mitchell, A., & Bergmann, P. J. (2016). Thermal and moisture habitat preferences do not maximize jumping performance in frogs. Functional Ecology, 30, 733–742. tps://doi.org/10.1111/1365-2435.12535
Navas, C. A. (1996a). Implications of microhabitat selection and patterns of activity on the thermal ecology of high elevation neotropical anurans. Oecologia, 108, 617–626. https://doi.org/10.1007/BF00329034
Navas, C. A. (1996b). Metabolic physiology, locomotor performance, and thermal niche breadth in neotropical anurans. Physiological Zoology, 69(6), 1481–1501. http://www.jstor.org/stable/30164271
Navas, C. A. (2006). Patterns of distribution of anurans in high Andean tropical elevations: insights from integrating biogeography and evolutionary physiology. Integrative and comparative Biology, 46(1), 82–91. https://doi.org/10.1093/icb/icj001
Navas, C. A., & Araujo, C. (2000). The Use of Agar Models to Study Amphibian Thermal Ecology. Journal of Herpetology, 34(2), 330–334. https://doi.org/10.2307/1565438
Navas, C. A., Carvajalino-Fernández, J. M., Saboyá-Acosta, L. P., Rueda-solano, L. A., & Carvajalino-Fernández, M. A. (2013). The body temperature of active amphibians along a tropical elevation gradient: patterns of mean and variance and inference from environmental data. Functional Ecology, 27, 1145–1154. https://doi.org/10.1111/1365-2435.12106
Navas, C. A., Gomes, F. R., & Carvalho, J. E. (2008). Thermal relationships and exercise physiology in anuran amphibians: Integration and evolutionary implications. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151(3), 344–362. https://doi.org/10.1016/j.cbpa.2007.07.003
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Wagner, H., & Oksanen, M. J. (2013). Package ‘vegan’. Community ecology package, version, 2(9), 1-295. https://cran.r-project.org/web/packages/vegan/vegan.pdf
Percino-Daniel, R., Contreras López, J. M., Téllez-Valdés, O., Méndez de la Cruz, F. R., Gonzalez-Voyer, A., & Piñero, D. (2021). Environmental heterogeneity shapes physiological traits in tropical direct–developing frogs. Ecology and evolution, 11(11), 6688–6702. https://doi.org/10.1002/ece3.7521
R Core Team. (2021). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Romero-Barreto, P. G. (2013). Requerimientos fisiológicos y microambientales de dos especies de anfibios (Scinax ruber e Hyloxalus yasuni) del bosque tropical de Yasuní y sus implicaciones ante el cambio climático [Tesis de pregrado]. Pontificia Universidad Católica del Ecuador, Quito. Repositorio PUCE. http://repositorio.puce.edu.ec/handle/22000/5726
Rueda-Solano, L. A., Navas, C., Carvajalino-Fernández, J., & Amézquita, A. (2016). Thermal ecology of montane Atelopus (anura: bufonidae): a study of intrageneric diversity. Journal of Thermal Biology, 58, 91–98. https://doi.org/10.1016/j.jtherbio.2016.04.007
Sanabria, E. A., Quiroga, L. B., & Acosta, J. C. (2003). Relación entre la temperatura corporal de adultos de Bufo arenarum (Anura: Bufonidae) y variables ambientales en un humedal de San Juan, Argentina. Multequina, 12, 49–53 https://www.redalyc.org/articulo.oa?id=42801205
Shoemaker, V. H., & McClanahan, L. L. (1975). Evaporative water loss, nitrogen excretion and osmoregulation in phyllomedusine frogs. Journal of comparative physiology, 100(4), 331–345. https://doi.org/10.1007/BF00691053
Sinervo, B., Jiménez, O., & Luja, V.H. (2012). Protocol for the construction of agar models for amphibian ecophysiology experiments. Santa Cruz. University of California, Santa Cruz.
Spotila, J. R., & Berman, E. N. (1976). Determination of skin resistance and the role of the skin in controlling water loss in amphibians and reptiles. Comparative Biochemistry and Physiology Part A: Physiology, 55(4), 407–411. https://doi.org/10.1016/0300-9629(76)90069-4
Tattersall, G. J., Eterovick, P. C., & Andrade, D. V. D. (2006). Tribute to R. G. Boutilier: skin colour and body temperature changes in basking Bokermannohyla alvarengai (Bokermann 1956). The Journal of experimental biology, 209, 1185–1196. https://doi.org/10.1242/jeb.02038
Trujillo-Pérez, M. M. (2017, Julio 10). Estación Meteorológica. Aula virtual de la Universidad Militar Nueva Granada. http://virtual2.umng.edu.co/moodle/course/view.php?id=3217
Valdivieso, D. & Tamsitt, J. R. (1974). Thermal Relations of the Neotropical Frog D. labialis (Anura: Hylidae). Royal Ontario Museum, 26, 1–15. https://www.biodiversitylibrary.org/item/123483#page/5/mode/1up
Whitlock, M. C., & Schluter, D. (2015). The analysis of biological data (2ª ed.). Roberts Publishers. https://www.academia.edu/43317940/The_Analysis_of_Biological_Data_Second_Edition
Withers, P. C. (1995). Evaporative water loss and colour change in the Australian desert tree frog Litoria rubella (Amphibia: Hylidae). Records of the Western Australian Museum, 17, 277–281. https://biostor.org/reference/239479
Wygoda, M. L., & Williams, A. A. (1991). Body temperature in free-ranging green tree frogs (Hyla cinerea): A comparison with" typical" frogs. Herpetologica, 47(3), 328–335. http://www.jstor.org/stable/3892625
Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in ecology and evolution, 1(1), 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Journal of Statistical Software, Book Reviews, 32(1), 1–3. https://doi.org/10.18637/jss.v032.b0
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Actualidades Biológicas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors exclusively authorize the Actualidades Biológicas journal to edit and publish the submitted manuscript if its publication is recommended and accepted, without this representing any cost to the Journal or the University of Antioquia.
All the ideas and opinions contained in the articles are sole responsibility of the authors. The total content of the issues or supplements of the journal is protected under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, so they cannot be used for commercial purposes, but for educational purposes. However, please mention the Actualidades Biológicas journal as a source and send a copy of the publication in which the content was reproduced.


