Biomass accumulation and population dynamics of a flooded forest in the Magdalena Basin (Colombia)
DOI:
https://doi.org/10.17533/udea.acbi/v45n119a04Keywords:
abovegroundbiomass, flooded forest, floristic composition, plant demography, soil fertility, Serranía de las QuinchasAbstract
Few studies in Colombia have quantified population dynamics on private conservation lands, making it difficult to know whether passive restoration (secondary succession) is a good option to increase forest biomass. We analyzed three permanent plots (0.3 ha) in the Reserva El Paujil (Middle Magdalena Valley, Colombia), in secondary forests, after 8-9 y. We tested whether population changes and aboveground biomass accumulation should be higher in secondary flooded forests than in terra firme forests. We found that mortality rates (7.98/y ± 4.50 DE) were higher than recruitment rates (5.89/y ± 5.29 SD), generating a mean negative change (-2.09/y ± 4.36 SD). However, the growth of surviving individuals was high (0.028 ± 0.019 SD), causing a positive rate of biomass accumulation (3.33 ton/y/ha ± 5.15 SD). This rate was much higher than in terra firme forests in the area (0.10 ton/y/ha ± 1.90 SD), which was associated with soil fertility. The most dominant species with high biomass accumulation was Anacardium excelsum. In contrast, the highest increase in mortality was observed for pioneer species (i.e., Cecropia membranacea and C. peltata), Bauhinia picta, and Guadua angustifolia (which also showed the highest recruitment). Overall, establishing a biological reserve has allowed the growth of large trees, generating carbon stocks equivalent to those from active ecological restoration processes.
Downloads
References
Aldana, A. M., Beltrán, M., Torres-Neira, J., & Stevenson, P. R. (2008). Habitat characterization and population density of brown spider monkeys (Ateles hybridus) in Magdalena Valley, Colombia. Neotropical Primates, 15(August), 46–50. https://bioone.org/journals/Neotropical-Primates/volume-15
Alvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., Lema, A., Moreno, F., Orrego, S., Rodríguez, L. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267, 297–308. https://www.sciencedirect.com/science/article/pii/S0378112711007444
Balcázar, M. P., Rangel, J. O., & Linares, E. L. (2000). Diversidad florística de la serranía de Las Quinchas, Magdalena medio (Colombia). Caldasia, 22(2), 191–224. https://www.jstor.org/stable/23641540
Bechara, F. C., Dickens, S. J., Farrer, E. C., Larios, L., Spotswood, E. N., Mariotte, P., & Suding, K. N. (2016). Neotropical rainforest restoration: comparing passive, plantation and nucleation approaches. Biodiversity and Conservation, 25(11), 2021-2034. https://link.springer.com/article/10.1007/s10531-016-1186-7
Burgos, A., Alvarado, P., Bejarano, C., Bernal, A., Cortes, A., Forero, J., Herrera, V, Luna Z., C, Ortega, D, Ospina G., I, Pichot, J, Piedrahita, S, Pulido, C y Vasquez, C. (1980). Estudio general de suelos de los municipios de Barrancabermeja, Puerto Wilches, Sabana de Torres y San Vicente de Chucurí (Departamento de Santander). Bogotá: Instituto Geográfico Agustín Codazzi. https://repositorio.fedepalma.org/handle/123456789/77519
Cárdenas-Camacho, L. M. (2014). Biomasa y crecimiento de especies forestales Nativas. Revisión de información disponible para Colombia [archivo PDF]. Recuperado de https://natura.org.co/publicaciones/cartilla-biomasa-crecimiento-especies-forestales-nativas/
Chazdon, R. L. (2008). Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science, 320(5882),1458-1460. https://www.science.org/doi/abs/10.1126/science.1155365
Clerici, N., Armenteras, D., Kareiva, P., Botero, R., Ramírez-Delgado, J. P., Forero-Medina, G., ... & Biggs, D. (2020). Deforestation in Colombian protected areas increased during post-conflict periods. Scientific reports, 10(1), 1-10. https://www.nature.com/articles/s41598-020-61861-y.
Díaz-Galindo, F. (1992). Cuentos de las selvas colombianas. Bogotá, Colombia. Olga Díaz de Stevenson.
Etter, A., & Botero, P. J. (1990). Efectos de los procesos climáticos y geomorfológicos en la dinámica del Bosque Húmedo Tropical de la Amazonía Colombiana. Colombia Amazonica, 4(2), 7–21.
Foley, J. A., Asner, G. P., Costa, M. H., Coe, M. T., DeFries, R., Gibbs, H. K., & Snyder, P. (2007). Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Frontiers in Ecology and the Environment, 5(1), 25-32. https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2
Fournier, L. A., & Vozzo, J. A. (2003). Anacardium excelsum. Tropical tree seed manual (pp. 294-296). Washington D.C., USA: USDA Forest Service.
García-Romero, H. G. (2013). Deforestación en Colombia: Retos y perspectivas. El Desafío del Desarrollo Sustentable en América Latina (pp. 123–142). Rio de Janerio, Brasil: Konrad Adenauer Stiftung. https://www.repository.fedesarrollo.org.co/handle/11445/337
Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A, Barlow, J., Peres, C. A., Bradshaw, C. J. A., Laurance, W. F., Lovejoy, T. E., & Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378–81. https://www.nature.com/articles/nature10425
Holl, K. D., & Zahawi, R. A. (2014). Factors explaining variability in woody above-ground biomass accumulation in restored tropical forest. Forest Ecology and Management, 319, 36-43. https://doi.org/10.1016/j.foreco.2014.01.024
Lima, L. S., Coe, M. T., Soares Filho, B. S., Cuadra, S. V., Dias, L. C., Costa, M. H., Lima L. S. & Rodrigues, H. O. (2014). Feedbacks between deforestation, climate, and hydrology in the Southwestern Amazon: implications for the provision of ecosystem services. Landscape ecology, 29(2), 261-274. https://link.springer.com/article/10.1007/s10980-013-9962-1
Link, A., De Luna, A. G., Alfonso, F., Giraldo-Beltran, P., & Ramirez, F. (2010). Initial effects of fragmentation on the density of three neotropical primate species in two lowland forests of Colombia. Endangered Species Research, 13(1), 41-50. https://www.int-res.com/abstracts/esr/v13/n1/p41-50
Lutz, J. A., Furniss, T. J., Johnson, D. J., Davies, S. J., Allen, D., Alonso, A., & Zimmerman, J. K. (2018). Global importance of large-diameter trees. Global Ecology and Biogeography, 27(7), 849-864.
Lozano, L. A., Franco, N., & Bonilla, J. L. (2012). Estimación del crecimiento diamétrico, de Anacardium excelsum (Kunth) Skeels, por medio de modelos no lineales, en bosques naturales del departamento del Tolima. Boletín Científico. Centro de Museos. Museo de Historia Natural, 16(1), 19-32. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30682012000100002
Marques, M. C., Burslem, D. F., Britez, R. M., & Silva, S. M. (2009). Dynamics and diversity of flooded and unflooded forests in a Brazilian Atlantic rain forest: a 16-year study. Plant Ecology & Diversity, 2(1), 57-64. https://www.tandfonline.com/doi/abs/10.1080/17550870902946569
Meister, K., Ashton, M. S., Craven, D., & Griscom, H. (2012). Managing Forest Carbon in a Changing Climate, 51–75, Springer, New Haeven, USA.
Millán-Cáceres, M. F. (2021, septiembre 27). Diversidad y composición florística de bosques fragmentados en el Magdalena Medio [Tesis de pregrado]. Universidad de Los Andes, Bogotá. https://repositorio.uniandes.edu.co/bitstream/handle/1992/53051/25325.pdf?sequence=1
Muller-Landau, H. C., Cushman, K. C., Arroyo, E. E., Martinez Cano, I., Anderson-Teixeira, K. J., & Backiel, B. (2021). Patterns and mechanisms of spatial variation in tropical forest productivity, woody residence time, and biomass. New Phytologist, 229(6), 3065-3087. https://doi.org/10.1111/nph.17084
Nascimento, H. E. M., & Laurance, W. F. (2004). Biomass dynamics in amazonian forest fragments, Ecological Applications 14(4), s127–s138. https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/01-6003
Norden, N., Chazdon, R. L., Chao, A., Jiang, Y.-H., & Vílchez-Alvarado, B. (2009). Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecology Letters, 12(5), 385–94. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2009.01292.x
Norden, N., Mesquita, R. C., Bentos, T. V., Chazdon, R. L., & Williamson, G. B. (2011). Contrasting community compensatory trends in alternative successional pathways in central Amazonia. Oikos, 120(1), 143-151. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0706.2010.18335.x
Phillips, J. F., Duque A. J., Yepes A. P., Cabrera K. R., Navarrete D. A., Álvarez E., Cárdenas D. (2011). Estimación de las reservas potenciales de carbono almacenadas en la biomasa aérea en bosques naturales de Colombia. Instituto de Hidrología, Meteorología, y Estudios Ambientales-IDEAM-. Bogotá D.C., Colombia [archivo PDF]. Recuperado de http://www.ideam.gov.co/documents/13257/13548/Estimacion+Carbono+2005.pdf/e274a3ce-a49c-45d6-8799-67d509edfd59
Phillips, O., Baker, T., Feldpausch, T., Brienen, R. (2009). Manual de campo para la remedición y establecimiento de parcelas. RAINFOR, Ed. Poorter, L., Craven, D., Jakovac, C. C., van der Sande, M. T., Amissah, L., Bongers, F., ... & Hérault, B. (2021). Multidimensional tropical forest recovery. Science, 374(6573), 1370-1376. DOI: 10.1126/science.abh3629
ProAves (2010). Reserva Natural de las Aves El Paujil. Recuperado el 30 de marzo del 2021, de http://www.proaves.org/rna-el-paujil/
R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Raiesi, F., & Beheshti, A. (2022). Evaluating forest soil quality after deforestation and loss of ecosystem services using network analysis and factor analysis techniques. CATENA, 208, 105778.
Restrepo, I. C., Aldana, A. M., & Stevenson, P. R. (2016). Dinámica de bosques en diferentes escenarios de tala selectiva en el Magdalena medio (Colombia). Colombia forestal, 19(2), 195-208. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-07392016000200005
Rozendaal, D. M., Bongers, F., Aide, T. M., Alvarez-Dávila, E., Ascarrunz, N., Balvanera, P., & Poorter, L. (2019). Biodiversity recovery of Neotropical secondary forests. Science advances, 5(3), eaau3114. https://www.science.org/doi/full/10.1126/sciadv.aau3114
Sherman, R. E., Fahey, T. J., Martin, P. H., & Battles, J. J. (2012). Patterns of growth, recruitment, mortality and biomass across an altitudinal gradient in a neotropical montane forest, Dominican Republic. Journal of Tropical Ecology, 28(05), 483–495. https://www.cambridge.org/core/journals/A3E30E17B72F9EB2AFC9A8A0F63F2125
Sierra, C. A., Del Valle, J. I., & Restrepo, H. I. (2012). Total carbon accumulation in a tropical forest landscape. Carbon Balance and Management, 7(1), 1-13. https://doi.org/10.1186/1750-0680-7-12
Silva-Herrera, L. J. (1999). Plan de factibilidad y estratégico de la reforestadora Bosques del Futuro S.A. ubicada en el Magdalena medio [archivo PDF]. Recuperado de https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1123&context=maest_administracion
Stevenson, P. R. (2011). The abundance of large ateline monkeys is positively associated with the diversity of plants regenerating in neotropical forests. Biotropica, 43(4), 512–519. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1744-7429.2010.00708.x
Stevenson, P. R., Aldana, A. M., Cárdenas, S., & Negret, P. J. (2018). Flooding and soil composition determine beta diversity of lowland forests in Northern South America. Biotropica, 50(4), 568-577. https://onlinelibrary.wiley.com/doi/abs/10.1111/btp.12541
Vourlitis, G. L., Hentz, C. S., Pinto Jr, O. B., Carneiro, E., & de Souza Nogueira, J. (2017). Soil N, P, and C dynamics of upland and seasonally flooded forests of the Brazilian Pantanal. Global Ecology and Conservation, 12, 227-240. https://www.sciencedirect.com/science/article/pii/S2351989417302184
Wade, C. M., Austin, K. G., Cajka, J., Lapidus, D., Everett, K. H., Galperin, D., ... & Sobel, A. (2020). What is threatening forests in protected areas? A global assessment of deforestation in protected areas, 2001–2018. Forests, 11(5), 539. https://www.mdpi.com/1999-4907/11/5/539
Zianis, D. (2005). Aspects of tree allometry. New Research on Forest Ecosystems, UK, 113-144.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Actualidades Biológicas
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors exclusively authorize the Actualidades Biológicas journal to edit and publish the submitted manuscript if its publication is recommended and accepted, without this representing any cost to the Journal or the University of Antioquia.
All the ideas and opinions contained in the articles are sole responsibility of the authors. The total content of the issues or supplements of the journal is protected under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, so they cannot be used for commercial purposes, but for educational purposes. However, please mention the Actualidades Biológicas journal as a source and send a copy of the publication in which the content was reproduced.