Characteristics of microorganisms used as probiotics and new probiotics
DOI:
https://doi.org/10.17533/udea.acbi/v45n119a05Keywords:
lactic acid bacteria, traditional probiotics, new probioticsAbstract
Probiotics are live microorganisms that when properly administered confer a health benefit to the host. Lactic acid bacteria are among the main microorganisms recognized as probiotics. Not all lactic bacteria are considered probiotics as they must meet certain characteristics such as growth at a pH lower than 4.0, are able to exert control on pathogenic bacteria, can survive in the gastrointestinal tract, have tolerance to bile salts, are able to adhere to intestinal mucus and epithelial cells, have the ability to co-aggregate and self-aggregate, etc. Bacteria that possess these characteristics are called traditional probiotics. However, over the years other microorganisms with probiotic potential have been studied. Among the differences between traditional probiotics and new probiotics is their origin, as new probiotics are always isolated from the human gastrointestinal tract, which makes them difficult to cultivate because they are sensitive to oxygen. In contrast, traditional probiotics can be isolated from the gastrointestinal tract, but the main sources are from foods, fermented or not. An important characteristic of new probiotics is that benefits in the treatment of specific diseases are attributed to them. In this review, the main characteristics of traditional probiotics and new probiotics are reviewed.
Downloads
References
Adebayo, T. B., Ishola, R., & Oyewunmi, T. (2018). Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains. Biotechnology reports, 19, 1-8. https://doi.org/10.1016/j.btre.2018.e00271
Aviña, F. J. A., Ángel, O. J., & Ramírez, C. P. J. (2006). Microorganismos probióticos y modulación inmunológica. Médicas UIS, 19, 105-112. https://revistas.uis.edu.co/index.php/revistamedicasuis/article/view/2162
Aguilar-Toalá, J. E., García-Varela, R., García, S. H., Mata-Haro, V., González-Córdova, A. F., Vallejo-Córdova, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in food science & technology, 75, 105-114. https://doi.org/10.1016/j.tifs.2018.03.009
Agudelo, L. N., Torres, T. M. M., Álvarez, L. C., & Vélez, A. M. L. (2015). Bacteriocinas producidas por bacterias ácido lácticas y su aplicación en la industria de alimentos. Revista alimentos hoy, 23(35), 186-205. https://alimentoshoy.acta.org.co/index.php/hoy/article/view/356
Akter, S., Park, H. J., & Kil, J. H. (2020). Potential health-promoting benefits of paraprobiotics, inactivated probiotic cells. Journal of microbiology and biotechnology, 30(4), 477-481. https://doi.org/10.4014/jmb.1911.11019
Amirí, S., Rezazadeh-Bari, M., Alizadeh-Khaledabad, M., Rezaei-Mokarram, R., & Sowti-Khiabani, M. (2021). Fermentation optimization for co-production of postbiotics by bifidobacterium lactis BB12 in cheese whey. Waste and biomass valorization, 12, 5869-5884. https://doi.org/10.1007/s12649-021-01429-7
Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121-141. https://doi.org/10.1016/j.cell.2014.03.011
Blinkova, L., Martirosyan, M. D., Pakhomov, Y., Dmitrieva, O., Vaughan, R., & Altshuler, M. (2014). Nonculturable forms of bacteria in lyophilized probiotic preparations. Functional foods in health and disease, 4(2), 66-76. https://doi.org/10.31989/ffhd.v4i2.29
Boletín Tecnológico: Alimentos funcionales con probióticos, bancos de patentes SIC. (2014, noviembre). Recuperado de https://issuu.com/quioscosic/docs/alimentos_probioticos__28noviembre_
Castañeda-Guillot, C. (2019). Probióticos de nueva generación. Belize journal of medicine, 8(2), 26-33.
Castañeda-Guillot, C. (2021). Nueva Bioterapéutica: Probióticos de próxima generación. Revista cubana de pediatría, 93(1), e1384.
Carnicé, T. R. (2006). Probióticos concepto y mecanismo de acción. Anales de pediatría, 41, 30-41.
Carr, F. J., Chill, D., & Maida, N. (2002). The lactic acid bacteria: A literature survey. Critical reviews in microbiology, 28(4), 281-370. https://doi.org/10.1080/1040-840291046759
Cunningham, M., Azcarate, P. A. M., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, D. H., Hunter, K., Manurung, S., Obis, D., Petrova, M. I., Steinert, R. E., Swanson, S. K., Sinderen, D. V., Vulevic, J., & Gibson, G. R. (2021). Shaping the future of probiotics and prebiotics. Trends in microbiology, 29(8), 667-685. https://doi.org/10.1016/j.tim.2021.01.003
Chih-Jung, C., Tzu-Lung, L., Yu-Ling, T., Tsung-Ru, W., Wei-Fan, L., Chia-Chen, L., & Hsin-Chih L. (2019). Next generation probiotics in disease amelioration. Journal of food and drug analysis, 27(3), 615-622. https://doi.org/10.1016/j.jfda.2018.12.011
De Filippis, F., Esposito, A., & Ercolin, D. (2022). Outlook on next-generation probiotics from the human gut. Cellullar & molecular life sciences, 79, 76. https://doi.org/10.1007/s00018-021-04080-6
Eligo Bioscience Announces Successful Outcome in US Patent Interference against SNIPR Biome on CRISPR-Cas antimicrobials. (2021, diciembre 2). Recuperado de https://eligo.bio/successful-crispr-patent-interference/
Guidelines for the Evaluation of Probiotics in Food. (2002, Mayo 1). Recuperado de https://www.mhlw.go.jp/file/05-Shingikai-11121000-Iyakushokuhinkyoku Soumuka/0000197343.pdf
Gómez, L. A. (2019). Microbioma, salud, y enfermedad: probióticos, prebióticos, y simbióticos. Biomédica: revista del Instituto Nacional de salud, 39(4), 617-621.
Gorbeña, J. C. R., &. Sáenz, T. A. (2008). Bacterias acido lácticas: Biopreservante de los alimentos. Biotempo, 8, 54-64. https://doi.org/10.31381/biotempo.v8i0.865
Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Ruben, A., & Wargo, A. J. (2018). The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer cell, 33(4), 570-580. https://doi.org/10.1016/j.ccell.2018.03.015
Heredia, C. P. Y., Hernández, M. A., Gonzales, C. A. & Vallejo, C. B. (2017). Bacteriocinas de bacterias acido lácticas: mecanismos de acción y actividad antimicrobiana contra patógenos en quesos. Interciencia, 42(6); 340-346.
Isolauri, E., Sütas, Y., Kankaanpää, P., Arvilommi, H., & Salminen, S. (2001). Probiotics: effects on immunity. The american journal of clinical nutrition, 73(2), 444-450. https://doi.org/10.1093/ajcn/73.2.444s
Ibrahim, M., & Raman, K. (2021). Two-species community design of lactic acid bacteria for optimal production of lactate. Computational and structural biotechnology journal, 19, 6039-6049. https://doi.org/10.1016/j.csbj.2021.11.009
Jastrząb, R., Graczyk, D., & Siedlecki, P. (2021). Molecular and Cellular Mechanisms Influenced by Postbiotics. International journal of molecular sciences, 22(24), 13475. https://doi.org/10.3390/ijms222413475
Jurado, G. H., & Fajardo, A. C. (2017). Determinación del efecto probiótico in vitro de Lactobacillus gasseri sobre una cepa de Staphylococcus epidermis. Biosalud, 16(2), 53-69. https://doi.org/10.17151/biosa.2017.16.2.6
Kaiting, J. (2021). Lactic acid bacteria antibacterial peptides: classification and current application. E3S Web of conferences, 271, 03016. https://doi.org/10.1051/e3sconf/202127103016
Kirmiz, N., Galindo, K., Cruz, L. K., Luna, E., Rhoades, N., Podar, M., & Flores, G. E. (2020). Comparatives genomics guides elucidation of vitamin B12 biosynthesis in novel human- associated Akkermansia Strains. Applied and environmental microbiology, 86, 117-119. https://doi.org/10.1128/AEM.02117-19
Kumar, R., Bansal, P., Singh, J., & Dhanda, S. (2020). Purification, partial structural characterization and health benefits of exopolysaccharides from potential probiotic Pediococcus acidilactici NCDC 252. Process biochemistry, 99, 79-86. https://doi.org/10.1016/j.procbio.2020.08.028
Kumari, M., Singh, P., Nataraj, H. B., Kokkiligadda, A., Naithani, H., Ali, A. S., Behare, V. P., & Nagpal, R. (2021). Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food research international, 150(A), 110716. https://doi.org/10.1016/j.foodres.2021.110716
McKee, T., & McKee, J. R. (2016), Bioquímica: Las bases moleculares de la vida. Nueva York, USA, McGRAW-HILL.
Martin, R., & Langella, P. (2019). Emerging health concepts in the probiotics field: streamlining the definitions. Frontiers in microbiology, 10, 1047. https://doi.org/10.3389/fmicb.2019.01047
Michels, M., Fernández, A. J. G., Lorenzo, V. A. P., Rosseto, M., Ramlov, F., Corneo, E., Feuser, P., Gelain, D., & Dal-Pizzol, F. (2022). Immunomodulatory effect of Bifidobacterium, Lactobacillus, and Streptococcus strains of paraprobiotics in lipopolysaccharide-stimulated inflammatory responses in RAW-264.7 Macrophages. current microbiology, 79(1), 9. https://doi.org/10.1007/s00284-021-02708-1
Misra, S., & Mohanty, D. (2019). Psychobiotics: a new approach for treating mental illness? Critical reviews in food science and nutrition, 59(8), 1230-1236. https://doi.org/10.1080/10408398.2017.1399860
Moradi, M., Kousheh, A. S., Almasi, H., Alizadeh, A., Guimarães, T. J., Yilmaz, N., & Lotfi, A. (2020). Postbiotics produced by lactic acid bacteria: the next frontier in food safety. Comprehensive reviews in food science and food safety, 19, 3390-3415. https://doi.org/10.1111/1541-4337.12613
Molina, V., Médici, M., Villena, J., Font, G., & Taranto, M. P. (2016). Dietary supplementation with probiotic strain improves immune-health in aged mice. Open journal of immunology, 6, 73-78. https://doi.org/10.4236/oji.2016.63008.
Navarro, D., Camacho, C. N., Torres, J. B., & Alonzo, L. (2021). Terapias complementarias en diarrea aguda. Archivos venezolanos de puericultura y pediatría, 84(1), 62-71.
Nataraj, B. H., Ali, A. S., Behare, V. P., & Yadav, H. (2020). Postbiotics parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial cell factories, 19, 168. https://doi.org/10.1186/s12934-020-01426-w
Nishida, K., Sawada, D., Kawai, T., Kuwano, Y., Fijiwara, S., & Rokutan, K. (2017). Para-psychobiotic Lactobacillus gasseri CP2305 ameliorates stress-related symptoms and sleep quality. Journal of applied microbiology, 123(6), 1561-1570. https://doi.org/10.1111/jam.13594
O´Toole, W. P., Marchesi, R. J., & Hill, C. (2017). Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nature microbiology, 2, 17057. https://doi.org/10.1038/nmicrobiol.2017.57
Parra Huertas, A. R. (2010). Review lactic acid bacteria: functional role in the foods. Biotecnología en el sector agropecuario y agroindustrial, 8(1), 93-105.
Plaza-Diaz. J., Ruiz, O. J. F., Gil, C. M., & Gil, A. (2019). Mechanisms of action of probiotics. Advances in nutrition, 10(1), 49-66. https://doi.org/10.1093/advances/nmy063
Prats Capote, A. (2007). Probióticos: una alternativa natural como promotores de la salud. Revista CENIC. Ciencias biológicas, 38(1), 49-53.
Prieto, P. A. (2010). Aspectos moleculares de los prebióticos. Revista de gastroenterología de México, 2(75). 210-211.
Ramírez–Chavarín, M. L., Wacher, C., Eslava-Campos, C. A., & Pérez-Chabela, M. L. (2013). Probiotic potential of thermotolerant lactic acid bacteria strains isolated from cooked meat products. International food research journal, 20(2), 991-1000.
Rondon, L., Añez, Z. M. R., Salvatierra, H. A., Meneses, B. R. T., & Heredia, R. M. T. (2015). Probióticos: generalidades. Archivos venezolanos de puericultura y pediatría, 78(4), 123-128.
Salva, S., & Álvarez, S. (2017). The role of microbiota and inmunobiotics in granulopoiesis of inmunocompromised hosts. Frontiers in immunology, 8, 507. https://doi.org/10.3389/fimmu.2017.00507
Salminen, S., Collado, M. C., Endo, A., Colin, C., Lebeer, S., Quigley, E. M. M., Sanders, E. M., Shamir, R., Swann, J. R., Szajewska, H., & Vinderola, G. (2021). The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature reviews: gastroenterology & hepatology, 18, 649-667. https://doi.org/10.1038/s41575-021-00440-6
SNIPRBIOME A CRISPR COMPANY. (2022). Recuperado de https://www.sniprbiome.com/publications
Sánchez, L., & Tromps, J. (2014). Caracterización in vitro de bacterias ácido-laticas con potencial probiótico. Revista salud animal, 36(2), 124-129.
Sharma, M., & Shukla, G. (2016). Metabiotics: one step ahead of probiotics; an insight into mechanisms involved in anticancerous effect in colorectal cancer. Frontiers in microbiology, 7, 1940. https://doi.org/10.3389/fmicb.2016.01940
Taverniti, V., & Guglielmetti, S. (2011). The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes nutrition, 6, 261-274. https://doi.org/10.1007/s12263-011-0218-x
Teame, T., Wang, A., Xie, M., Zhang, Z., Yang, Y., Ding, Q., Gao, C., Olsen, E. R., Ran, C., & Zhou, Z. (2020). Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: a review. Frontiers in nutrition, 7 570344. https://doi.org/10.3389/fnut.2020.570344
Tzu-Lung, L., Ching-Chung, S., Wei-Fan, L., Chi-Meng, T., Hsin-Chih L., & Chia-Chen L. (2019). Investiture of next generation probiotics on amelioration of diseases – Strains do matter. Medicine in microbiology, 1-2, 100002. https://doi.org/10.1016/j.medmic.2019.100002
Vázquez, M. S., Suarez, M. H., & Zapata, B. S. (2009). Utilización de sustancias antimicrobianas producidas por bacterias acido lácticas en la conservación de la carne. Revista chilena de nutrición, 36(1), 64-71. https://doi.org/10.4067/S0717-75182009000100007
Veiga, P., Suez, J., Derrien, M., & Elinav, E. (2020). Moving from probiotics to precision probiotics. Nature microbiology, 5, 878-808.
https://doi.org/10.1038/s41564-020-0721-1.
Yang, J., Li, Y., Wen, Z., Liu, W., Meng, L., & Huang, H. (2021). Oscillospira - a candidate for the next-generation probiotics. Gut microbes, 13(1), 1-18. https://doi.org/10.1080/19490976.2021.1987783
Zachary, J. S., Mays, T. C., & Nikhil, U. N. (2020). Quantifying and engineering mucus adhesion of probiotics. American chemical society: synthetic biology, 9(2), 356-367. https://doi.org/10.1021/acssynbio.9b00356
Zitvogel, L., Ayyoub, M., Routy, B., & Kroemer, G. (2016). Microbiome and anticancer immunosurveillance. Cell, 165(2), 275-287. https://doi.org/10.1016/j.cell.2016.03.001
Zendeboodi, F., Khorshidian, N., Mortazavian, M. A., & Da Cruz, A. G. (2020). Probiotic: conceptualization from a new approach. Food and science, 32, 103-123. https://doi.org/10.1016/j.cofs.2020.03.009
Zhang, L., Li, N., Caicedo, R., & Neu, J. (2005). Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-α-induced interleukin- 8 production in Caco- 2 cell. The journal of nutrition, 135(7), 1752-1756. https://doi.org/10.1093/jn/135.7.1752
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Actualidades Biológicas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors exclusively authorize the Actualidades Biológicas journal to edit and publish the submitted manuscript if its publication is recommended and accepted, without this representing any cost to the Journal or the University of Antioquia.
All the ideas and opinions contained in the articles are sole responsibility of the authors. The total content of the issues or supplements of the journal is protected under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, so they cannot be used for commercial purposes, but for educational purposes. However, please mention the Actualidades Biológicas journal as a source and send a copy of the publication in which the content was reproduced.