Composition and diversity of culturable cyanobacteria in sediment samples from the upper layers of two tropical reservoirs
DOI:
https://doi.org/10.17533/udea.acbi/v46n120a05Keywords:
benthic zones, sediment, tropical reservoir, cyanobacterial diversityAbstract
Benthic cyanobacteria research in high mountain reservoirs remains limited, mainly due to their complexity and knowledge gaps that persist in relation to their ecology in tropical regions. This study aimed to explore the composition, diversity, and toxic potential of cyanobacterial in the upper sediment of two Colombian reservoirs. Our investigation involved multiple methodologies, such as germination experiments, that allowed us to assess the presence and viability of cyanobacteria in upper sediment samples, while the competitive ELISA assay allowed for the quantification of toxins within the cultures. The molecular analysis of Operational Taxonomic Units (OTUs) from subsamples of sediment cultures focused on evaluating cyanobacterial diversity and richness among prokaryotic phyla, and the Phylogenetic analysis of culturable cyanobacteria. Chlorophyll-a measurements confirmed the presence of viable populations in sediment cultures, while microscopic identification demonstrated the growth capacity of cyanobacteria from the orders Nostocales, Chroococcales, Oscillatoriales, and Synechococcales under controlled laboratory conditions. Despite low microcystin levels in culture, the prior detection of mcy genes in direct sediment samples suggests a possible toxic potential of cyanobacterial inhabiting the upper sediments. Community analysis, based on the OTUs abundance, revealed a notably diverse microbial community in both reservoir sediments, with a higher relative abundance of cyanobacteria compared to other prokaryotic phyla. These findings support the hypothesis that surface sediments play a fundamental role as a repository for cyanobacteria that may pose inherent risks to ecosystem health. In conclusion, this research underscores the necessity of further studies to achieve a holistic comprehension of benthic cyanobacteria dynamics in high-mountain tropical reservoirs.
Downloads
References
Arboleda Baena, C. M. (2017). Determinación del potencial tóxico de cianobacterias Nostocales y Chroococcales en la columna de agua del embalse Riogrande II (Antioquia) a través de la detección del gen mcy [Tesis de Maestría, Universidad de Antioquia]. https://catalejo.udea.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=768343
Arismendi-González, L., Sepúlveda-Sánchez, M., Arboleda-Baena, C. M., Palacio-Betancur, H., Murillo-Ramos, E., Muskus-López, C. E., Pohlon, E., Flórez-Molina, M. T., Betancur-Uran, J., & Palacio-Baena, J. (2021). Evidence for toxic cyanobacteria in sediments and the water-sediment interface of a tropical drinking water reservoir. Limnologica, 91, 125924. https://doi.org/10.1016/j.limno.2021.125924
Borges, H. L., Branco, L. H., Martins, M. D., Lima, C. S., Barbosa, P. T., Lira, G. A., Bittencourt-Oliveira, M. C., & Molica, R. J. (2015). Cyanotoxin production and phylogeny of benthic cyanobacterial strains isolated from the northeast of Brazil. Harmful Algae, 43, 46-57. https://doi.org/10.1016/j.hal.2015.01.003
Bormans, M., Savar, V., Legrand, B., Mineaud, E., Robert, E., Lance, E., & Amzil, Z. (2020). Cyanobacteria and cyanotoxins in estuarine water and sediment. Aquatic Ecology, 54(2), 625-640. https://doi.org/10.1007/s10452-020-09764-y
Chorus, I., & Bartram, J. (1999). Toxic Cyanobacteria in Water: a guide to their Public Health consequences, monitoring, and management [Archivo PDF]. https://cdn.who.int/media/docs/default-source/wash-documents/water-safety-and-quality/toxic-cyanobacteria---1st-ed.pdf
Crispino, L. M., & Sant’Anna, C. L. (2006). Cianobacterias marinhas bentonicas de ilhas costeiras do Estado de Sao Paulo, Brasil. Revista Brasileira de Botanica, 29(4), 639-656. https://doi.org/10.1590/S0100-84042006000400014
Dalu, T., & Wasserman, R. J. (2018). Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables. Science of the Total Environment, 643, 835-841. https://doi.org/10.1016/j.scitotenv.2018.06.256
Everson, S., Fabbro, L., Kinnear, S., & Wright, P. (2011). Extreme differences in akinete, heterocyte and cylindrospermopsin
concentrations with depth in a successive bloom involving Aphanizomenon ovalisporum (Forti) and Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju. Harmful Algae, 10(3), 265-276. https://doi.org/10.1016/j.hal.2010.10.006
Gaget, V., Almuhtaram, H., Kibuye, F., Hobson, P., Zamyadi, A., Wert, E., & Brookes, J. D. (2022). Benthic cyanobacteria: A utility-centred field study. Harmful Algae, 113, 102185. https://doi.org/10.1016/j.hal.2022.102185
Gangi, D., Plastani, M. S., Laprida, C., Lami, A., Dubois, N., Bordet, F., Gogorza, C., Frau, D., & de Tezanos Pinto, P. (2020). Recent cyanobacteria abundance in a large sub-tropical reservoir inferred from analysis of sediment cores. Journal of Paleolimnology, 63(3), 195-209. https://doi.org/10.1007/s10933-020-00110-8
Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A., & Paerl, H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54, 4-20. https://doi.org/10.1016/j.hal.2015.12.007
Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. M. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied Environmental Microbiology, 63(8), 3233-3241. https://doi.org/10.1128/aem.63.8.3233-3241.1997
Hellweger, F. L., Kravchuk, E. S., Novotny, V., & Gladyshev, M. I. (2008). Agent-based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir. Limnology and Oceanography, 53(4), 1227-1241. https://doi.org/10.4319/lo.2008.53.4.1227
Herlemann, D. P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., & Andersson, A. F. (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME Journal, 5, 1571-1579. https://doi.org/10.1038/ismej.2011.41
Izaguirre, G., Jungblut, A. D., & Neilan, B. A. (2007). Benthic cyanobacteria (Oscillatoriaceae) that produce microcystin-LR, isolated from four reservoirs in southern California. Water Research, 41(2), 492-498. https://doi.org/10.1016/j.watres.2006.10.012
Komárek, J., & Anagnostidis K. (1998). Cyanoprokaryota. Teil 1/part 1: Chroococcales. Springer Spektrum, Heidelberg.
Komárek, J., & Anagnostidis K. (2005). Cyanoprokaryota. Teil 2/Part 2: Oscillatoriales. Springer Spektrum.
Komárek, J. (2013). Cyanoprokaryota. Teil 3/part 3: Heterocytous Genera. Springer Spektrum.
Legrand, B., Le Jeune, A. H., Colombet, J., Thouvenot, A., & Latour, D. (2017a). Akinetes may be representative of past nostocalean blooms: A case study of their benthic spatiotemporal distribution and potential for germination in a eutrophic lake. Applied and Environmental Microbiology, 83(23), 01571-17. https://doi.org/10.1128/AEM.01571-17
Legrand, B., Lamarque, A., Sabart, M., & Latour, D. (2017b). Benthic archives reveal recurrence and dominance of toxigenic cyanobacteria in a eutrophic lake over the last 220 years. Toxins, 9(9), 271. https://doi.org/10.3390/toxins9090271
Legrand, B., Miras, Y., Beauger, A., Dussauze, M., & Latour, D. (2019). Akinetes and ancient DNA reveal toxic cyanobacterial recurrences and their potential for resurrection in a 6700-year-old core from a eutrophic lake. Science of the Total Environment, 687, 1369-1380. https://doi.org/10.1016/j.scitotenv.2019.07.100
Lyra, C., Suomalainen, S., Gugger, M., Vezie, C., Sundman, P., Paulin, L., & Sivonen, K. (2001). Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis, and Planktothrix genera. International Journal of Systematic and Evolutionary Microbiology, 51, 513-526. https://10.1099/00207713-51-2-513.
Magina, F., & da Silva e Silva, L. (2008). Cianobacterias Psamicas em Sedimentos Marginais da Lagoa Rodrigo de Freitas, Estado do Rio de Janeiro, Brasil. Anuario Do Instituto de Geociencias, 31, 43-49.
Noffke, N., Gerdes, G., & Klenke, T. (2003). Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth-Science Reviews, 62(1-2), 163-176. https://doi.org/10.1016/S0012-8252(02)00158-7
Paerl, H. W., Hall, N. S., & Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment, 409(10), 1739-1745. https://doi.org/10.1016/j.scitotenv.2011.02.001
Palacio, H. M., Ramírez, J. J., Echenique, R. O., Palacio, J. A., & Sant’anna, C. L. (2015). Floristic composition of cyanobacteria in a neotropical, eutrophic reservoir. Revista Brasileira de Botanica, 38(4), 865-876. https://doi.org/10.1007/s40415-015-0185-3
Palacio, J., Florez-Molina, M., Molina-Perez, F., Toro, M., Gomez, A., Penuela, G., & Cuellar, W. (2017). Estudio de la Problematica Ambiental de tres Embalses de Empresas Públicas de Medellín para la Gestion Integral y Adecuada del Recurso Hídrico [Informe convenio EPM- Universidad de Antioquia].
Quiblier, C., Wood, S., Echenique-Subiabre, I., Heath, M., Villeneuve, A., & Humbert, J. F., (2013). A review of current knowledge on toxic benthic freshwater cyanobacteria ecology, toxin production and risk management. Water Research, 47(15), 5464-5479. https:// doi.org/10.1016/j.watres.2013.06.042
Rajaniemi, P., Hrouzek, P., Kaštovská, K., Willame, R., Rantala, A., Hoffmann, L., Komárek, J., & Sivonen, K. (2005). Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostacales, cyanobacteria). International Journal of Systematic and Evolutionary Microbiology, 55(1), 11-26. https://doi.org/10.1099/ijs.0.63276-0
Reynolds, C. S., & Petersen, A. C. (2000). The distribution of planktonic Cyanobacteria in Irish lakes in relation to their trophic states. Hidrobiología, 424, 91-99. https://doi.org/10.1023/A:1003901012233.
Rodríguez López, M. L. (2013). Cultivo, aislamiento e identificación de cianobacterias procedentes de los embalses la Fe, Riogrande II y Porce II [Tesis de Maestría, Universidad de Antioquia].
Roque J., & Tamagnini, P. (2021). Characterization of cyanobacterial strains isolated from Portuguese soil/soil biocrusts and a first insight into this community [Tese de Mestrado, Universidade do Porto]. https://repositorio-aberto.up.pt/bitstream/10216/139400/2/528160.pdf
Salomón, S., Rivera-Rondón, C. A., & Zapata, A. M. (2020). Cyanobacterial blooms in Colombia: State of knowledge and research needs in the context of climate global change. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 376-391. https://doi.org/10.18257/raccefyn.1050
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing Mothur: open-source, platform independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541 https://doi.org/10.1128/AEM.01541-09.
Sepúlveda-Sánchez, M., Arismendi-González, L. M., Arboleda-Baena, C. M., Muskus- López, C. E., Pohlon, E., Florez-Molina, M. T., & Palacio-Baena, J. A. (2021). First evidence of potential toxic cyanobacteria in the water-sediment interface of a tropical drinking water reservoir. Revista Internacional de contaminación Ambiental, 37, 259-272. https://doi.org/10.20937/RICA.53696
Silva-e-Silva, L., (2004). Estruturas microbianas recentes da lagoa Pernambuco, Estado do Rio de Janeiro, Brasil. Revista Brasileira de Paleontologia, 7(2), 189-192. https://doi.org/10.4072/ rbp.2004.2.11.
Tucci, A., Sant’Anna, C. L., Azevedo, M. T. P., Malone, C. F. S., Werner, V. R., Rosini, E. F., Gama, W. A., Hentschke, G. S., Osti, J. A. S., Dias, A. S. Jacinavicius, F. R., & Santos, K. R. S. (2019). Atlas de Cianobactérias e Microalgas de Águas Continentais Brasileiras [Archivo PDF]. https://www.infraestruturameioambiente.sp.gov.br/institutodebotanica/wp-content/uploads/sites/235/2013/09/virtuais_3atlas.pdf
Westrick, J. A., & Szlag, D., (2018). A cyanotoxin primer for drinking water professionals. American Water Works Association, 110(8), E1-E16. https://doi.org/10.1002/awwa.1088
Wood, S. A., Jentzsch, K., Rueckert, A., Hamilton, D. P., & Cary, S. C. (2009). Hindcasting cyanobacterial communities in Lake Okaro with germination experiments and genetic analyses. FEMS Microbiology Ecology, 67(2), 252-260. https://doi.org/10.1111/j.1574-6941.2008.00630.x
Wood, S. M., Kremp, A., Savela, H., Akter, S., Vartti, V. P., Saarni, S., & Suikkanen, S. (2021). Cyanobacterial Akinete Distribution, Viability, and Cyanotoxin Records in Sediment Archives from the Northern Baltic Sea. Frontiers in Microbiology, 12, 681881. https://doi.org/10.3389/fmicb.2021.681881
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Actualidades Biológicas
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors exclusively authorize the Actualidades Biológicas journal to edit and publish the submitted manuscript if its publication is recommended and accepted, without this representing any cost to the Journal or the University of Antioquia.
All the ideas and opinions contained in the articles are sole responsibility of the authors. The total content of the issues or supplements of the journal is protected under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, so they cannot be used for commercial purposes, but for educational purposes. However, please mention the Actualidades Biológicas journal as a source and send a copy of the publication in which the content was reproduced.