Composition and diversity of culturable cyanobacteria in sediment samples from the upper layers of two tropical reservoirs

Authors

DOI:

https://doi.org/10.17533/udea.acbi/v46n120a05

Keywords:

benthic zones, sediment, tropical reservoir, cyanobacterial diversity

Abstract

Benthic cyanobacteria research in high mountain reservoirs remains limited, mainly due to their complexity and knowledge gaps that persist in relation to their ecology in tropical regions. This study aimed to explore the composition, diversity, and toxic potential of cyanobacterial in the upper sediment of two Colombian reservoirs. Our investigation involved multiple methodologies, such as germination experiments, that allowed us to assess the presence and viability of cyanobacteria in upper sediment samples, while the competitive ELISA assay allowed for the quantification of toxins within the cultures. The molecular analysis of Operational Taxonomic Units (OTUs) from subsamples of sediment cultures focused on evaluating cyanobacterial diversity and richness among prokaryotic phyla, and the Phylogenetic analysis of culturable cyanobacteria. Chlorophyll-a measurements confirmed the presence of viable populations in sediment cultures, while microscopic identification demonstrated the growth capacity of cyanobacteria from the orders Nostocales, Chroococcales, Oscillatoriales, and Synechococcales under controlled laboratory conditions. Despite low microcystin levels in culture, the prior detection of mcy genes in direct sediment samples suggests a possible toxic potential of cyanobacterial inhabiting the upper sediments. Community analysis, based on the OTUs abundance, revealed a notably diverse microbial community in both reservoir sediments, with a higher relative abundance of cyanobacteria compared to other prokaryotic phyla. These findings support the hypothesis that surface sediments play a fundamental role as a repository for cyanobacteria that may pose inherent risks to ecosystem health. In conclusion, this research underscores the necessity of further studies to achieve a holistic comprehension of benthic cyanobacteria dynamics in high-mountain tropical reservoirs.

|Abstract
= 527 veces | PDF
= 218 veces| | HTML
= 5 veces| | XML
= 2 veces| | EPUB
= 2 veces| | SUPPLEMENTARY MATERIAL
= 10 veces| | GRAPHICAL ABSTRACT
= 19 veces|

Downloads

Download data is not yet available.

Author Biographies

Lina Arismendi-González, Universidad de Antioquia

Grupo de Gestión y Modelación Ambiental (GAIA), Universidad de Antioquia, Medellín, Colombia.

Luz Yaneth Orozco, Universidad de Antioquia

Grupo de Gestión y Modelación Ambiental (GAIA), Universidad de Antioquia, Medellín, Colombia.

Clara María Arboleda-Baena, Universidade Federal

Laboratory of Microbial Processes & Biodiversity, Departamento de Hidrobiologia, Universidade Federal, São Carlos, Brazil.

Marisol Sepúlveda-Sánchez, Universidad de Antioquia

Grupo de Gestión y Modelación Ambiental (GAIA), Universidad de Antioquia, Medellín, Colombia.

Carlos Enrique Muskus-López, Universidad de Antioquia

Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia.

Elisabeth Pohlon, Justus Liebig University

Institute for Animal Ecology, and Systematics, Justus Liebig University, Gießen, Germany.

María Teresa Flórez-Molina, Universidad de Antioquia

Grupo de Gestión y Modelación Ambiental (GAIA), Universidad de Antioquia, Medellín, Colombia.

Jaime Palacio-Baena, Universidad de Antioquia

Grupo de Gestión y Modelación Ambiental (GAIA), Universidad de Antioquia, Medellín, Colombia.

References

Arboleda Baena, C. M. (2017). Determinación del potencial tóxico de cianobacterias Nostocales y Chroococcales en la columna de agua del embalse Riogrande II (Antioquia) a través de la detección del gen mcy [Tesis de Maestría, Universidad de Antioquia]. https://catalejo.udea.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=768343

Arismendi-González, L., Sepúlveda-Sánchez, M., Arboleda-Baena, C. M., Palacio-Betancur, H., Murillo-Ramos, E., Muskus-López, C. E., Pohlon, E., Flórez-Molina, M. T., Betancur-Uran, J., & Palacio-Baena, J. (2021). Evidence for toxic cyanobacteria in sediments and the water-sediment interface of a tropical drinking water reservoir. Limnologica, 91, 125924. https://doi.org/10.1016/j.limno.2021.125924

Borges, H. L., Branco, L. H., Martins, M. D., Lima, C. S., Barbosa, P. T., Lira, G. A., Bittencourt-Oliveira, M. C., & Molica, R. J. (2015). Cyanotoxin production and phylogeny of benthic cyanobacterial strains isolated from the northeast of Brazil. Harmful Algae, 43, 46-57. https://doi.org/10.1016/j.hal.2015.01.003

Bormans, M., Savar, V., Legrand, B., Mineaud, E., Robert, E., Lance, E., & Amzil, Z. (2020). Cyanobacteria and cyanotoxins in estuarine water and sediment. Aquatic Ecology, 54(2), 625-640. https://doi.org/10.1007/s10452-020-09764-y

Chorus, I., & Bartram, J. (1999). Toxic Cyanobacteria in Water: a guide to their Public Health consequences, monitoring, and management [Archivo PDF]. https://cdn.who.int/media/docs/default-source/wash-documents/water-safety-and-quality/toxic-cyanobacteria---1st-ed.pdf

Crispino, L. M., & Sant’Anna, C. L. (2006). Cianobacterias marinhas bentonicas de ilhas costeiras do Estado de Sao Paulo, Brasil. Revista Brasileira de Botanica, 29(4), 639-656. https://doi.org/10.1590/S0100-84042006000400014

Dalu, T., & Wasserman, R. J. (2018). Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables. Science of the Total Environment, 643, 835-841. https://doi.org/10.1016/j.scitotenv.2018.06.256

Everson, S., Fabbro, L., Kinnear, S., & Wright, P. (2011). Extreme differences in akinete, heterocyte and cylindrospermopsin

concentrations with depth in a successive bloom involving Aphanizomenon ovalisporum (Forti) and Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju. Harmful Algae, 10(3), 265-276. https://doi.org/10.1016/j.hal.2010.10.006

Gaget, V., Almuhtaram, H., Kibuye, F., Hobson, P., Zamyadi, A., Wert, E., & Brookes, J. D. (2022). Benthic cyanobacteria: A utility-centred field study. Harmful Algae, 113, 102185. https://doi.org/10.1016/j.hal.2022.102185

Gangi, D., Plastani, M. S., Laprida, C., Lami, A., Dubois, N., Bordet, F., Gogorza, C., Frau, D., & de Tezanos Pinto, P. (2020). Recent cyanobacteria abundance in a large sub-tropical reservoir inferred from analysis of sediment cores. Journal of Paleolimnology, 63(3), 195-209. https://doi.org/10.1007/s10933-020-00110-8

Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A., & Paerl, H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54, 4-20. https://doi.org/10.1016/j.hal.2015.12.007

Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. M. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied Environmental Microbiology, 63(8), 3233-3241. https://doi.org/10.1128/aem.63.8.3233-3241.1997

Hellweger, F. L., Kravchuk, E. S., Novotny, V., & Gladyshev, M. I. (2008). Agent-based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir. Limnology and Oceanography, 53(4), 1227-1241. https://doi.org/10.4319/lo.2008.53.4.1227

Herlemann, D. P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., & Andersson, A. F. (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME Journal, 5, 1571-1579. https://doi.org/10.1038/ismej.2011.41

Izaguirre, G., Jungblut, A. D., & Neilan, B. A. (2007). Benthic cyanobacteria (Oscillatoriaceae) that produce microcystin-LR, isolated from four reservoirs in southern California. Water Research, 41(2), 492-498. https://doi.org/10.1016/j.watres.2006.10.012

Komárek, J., & Anagnostidis K. (1998). Cyanoprokaryota. Teil 1/part 1: Chroococcales. Springer Spektrum, Heidelberg.

Komárek, J., & Anagnostidis K. (2005). Cyanoprokaryota. Teil 2/Part 2: Oscillatoriales. Springer Spektrum.

Komárek, J. (2013). Cyanoprokaryota. Teil 3/part 3: Heterocytous Genera. Springer Spektrum.

Legrand, B., Le Jeune, A. H., Colombet, J., Thouvenot, A., & Latour, D. (2017a). Akinetes may be representative of past nostocalean blooms: A case study of their benthic spatiotemporal distribution and potential for germination in a eutrophic lake. Applied and Environmental Microbiology, 83(23), 01571-17. https://doi.org/10.1128/AEM.01571-17

Legrand, B., Lamarque, A., Sabart, M., & Latour, D. (2017b). Benthic archives reveal recurrence and dominance of toxigenic cyanobacteria in a eutrophic lake over the last 220 years. Toxins, 9(9), 271. https://doi.org/10.3390/toxins9090271

Legrand, B., Miras, Y., Beauger, A., Dussauze, M., & Latour, D. (2019). Akinetes and ancient DNA reveal toxic cyanobacterial recurrences and their potential for resurrection in a 6700-year-old core from a eutrophic lake. Science of the Total Environment, 687, 1369-1380. https://doi.org/10.1016/j.scitotenv.2019.07.100

Lyra, C., Suomalainen, S., Gugger, M., Vezie, C., Sundman, P., Paulin, L., & Sivonen, K. (2001). Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis, and Planktothrix genera. International Journal of Systematic and Evolutionary Microbiology, 51, 513-526. https://10.1099/00207713-51-2-513.

Magina, F., & da Silva e Silva, L. (2008). Cianobacterias Psamicas em Sedimentos Marginais da Lagoa Rodrigo de Freitas, Estado do Rio de Janeiro, Brasil. Anuario Do Instituto de Geociencias, 31, 43-49.

Noffke, N., Gerdes, G., & Klenke, T. (2003). Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth-Science Reviews, 62(1-2), 163-176. https://doi.org/10.1016/S0012-8252(02)00158-7

Paerl, H. W., Hall, N. S., & Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment, 409(10), 1739-1745. https://doi.org/10.1016/j.scitotenv.2011.02.001

Palacio, H. M., Ramírez, J. J., Echenique, R. O., Palacio, J. A., & Sant’anna, C. L. (2015). Floristic composition of cyanobacteria in a neotropical, eutrophic reservoir. Revista Brasileira de Botanica, 38(4), 865-876. https://doi.org/10.1007/s40415-015-0185-3

Palacio, J., Florez-Molina, M., Molina-Perez, F., Toro, M., Gomez, A., Penuela, G., & Cuellar, W. (2017). Estudio de la Problematica Ambiental de tres Embalses de Empresas Públicas de Medellín para la Gestion Integral y Adecuada del Recurso Hídrico [Informe convenio EPM- Universidad de Antioquia].

Quiblier, C., Wood, S., Echenique-Subiabre, I., Heath, M., Villeneuve, A., & Humbert, J. F., (2013). A review of current knowledge on toxic benthic freshwater cyanobacteria ecology, toxin production and risk management. Water Research, 47(15), 5464-5479. https:// doi.org/10.1016/j.watres.2013.06.042

Rajaniemi, P., Hrouzek, P., Kaštovská, K., Willame, R., Rantala, A., Hoffmann, L., Komárek, J., & Sivonen, K. (2005). Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostacales, cyanobacteria). International Journal of Systematic and Evolutionary Microbiology, 55(1), 11-26. https://doi.org/10.1099/ijs.0.63276-0

Reynolds, C. S., & Petersen, A. C. (2000). The distribution of planktonic Cyanobacteria in Irish lakes in relation to their trophic states. Hidrobiología, 424, 91-99. https://doi.org/10.1023/A:1003901012233.

Rodríguez López, M. L. (2013). Cultivo, aislamiento e identificación de cianobacterias procedentes de los embalses la Fe, Riogrande II y Porce II [Tesis de Maestría, Universidad de Antioquia].

Roque J., & Tamagnini, P. (2021). Characterization of cyanobacterial strains isolated from Portuguese soil/soil biocrusts and a first insight into this community [Tese de Mestrado, Universidade do Porto]. https://repositorio-aberto.up.pt/bitstream/10216/139400/2/528160.pdf

Salomón, S., Rivera-Rondón, C. A., & Zapata, A. M. (2020). Cyanobacterial blooms in Colombia: State of knowledge and research needs in the context of climate global change. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 376-391. https://doi.org/10.18257/raccefyn.1050

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing Mothur: open-source, platform independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541 https://doi.org/10.1128/AEM.01541-09.

Sepúlveda-Sánchez, M., Arismendi-González, L. M., Arboleda-Baena, C. M., Muskus- López, C. E., Pohlon, E., Florez-Molina, M. T., & Palacio-Baena, J. A. (2021). First evidence of potential toxic cyanobacteria in the water-sediment interface of a tropical drinking water reservoir. Revista Internacional de contaminación Ambiental, 37, 259-272. https://doi.org/10.20937/RICA.53696

Silva-e-Silva, L., (2004). Estruturas microbianas recentes da lagoa Pernambuco, Estado do Rio de Janeiro, Brasil. Revista Brasileira de Paleontologia, 7(2), 189-192. https://doi.org/10.4072/ rbp.2004.2.11.

Tucci, A., Sant’Anna, C. L., Azevedo, M. T. P., Malone, C. F. S., Werner, V. R., Rosini, E. F., Gama, W. A., Hentschke, G. S., Osti, J. A. S., Dias, A. S. Jacinavicius, F. R., & Santos, K. R. S. (2019). Atlas de Cianobactérias e Microalgas de Águas Continentais Brasileiras [Archivo PDF]. https://www.infraestruturameioambiente.sp.gov.br/institutodebotanica/wp-content/uploads/sites/235/2013/09/virtuais_3atlas.pdf

Westrick, J. A., & Szlag, D., (2018). A cyanotoxin primer for drinking water professionals. American Water Works Association, 110(8), E1-E16. https://doi.org/10.1002/awwa.1088

Wood, S. A., Jentzsch, K., Rueckert, A., Hamilton, D. P., & Cary, S. C. (2009). Hindcasting cyanobacterial communities in Lake Okaro with germination experiments and genetic analyses. FEMS Microbiology Ecology, 67(2), 252-260. https://doi.org/10.1111/j.1574-6941.2008.00630.x

Wood, S. M., Kremp, A., Savela, H., Akter, S., Vartti, V. P., Saarni, S., & Suikkanen, S. (2021). Cyanobacterial Akinete Distribution, Viability, and Cyanotoxin Records in Sediment Archives from the Northern Baltic Sea. Frontiers in Microbiology, 12, 681881. https://doi.org/10.3389/fmicb.2021.681881

Published

2024-02-06

How to Cite

Arismendi González, L., Arroyave, E., Orozco, L. Y., Arboleda Baena, C. M., Sepúlveda Sánchez, M., Palacio Betancur, H., Muskus López, C. E., Pohlon, E., Flórez Molina, M. T., & Palacio Baena, J. (2024). Composition and diversity of culturable cyanobacteria in sediment samples from the upper layers of two tropical reservoirs. Actualidades Biológicas, 46(120), e4605. https://doi.org/10.17533/udea.acbi/v46n120a05

Issue

Section

Full articles

Most read articles by the same author(s)