Estimación de heredabilidad y correlaciones genéticas en caracteres morfológicos y fisiológicos para una población de Zamia obliqua A.Br. (Zamiaceae: Cycadales)
DOI:
https://doi.org/10.17533/udea.acbi.329081Palabras clave:
correlaciones fenotípicas, parentesco, similitud fenotípica, variabilidad fenotípica, ZamiaceaeResumen
La respuesta a la selección natural en caracteres cuantitativos en una población natural depende de la magnitud de variabilidad genética y las correlaciones genéticas en los rasgos, y estos parámetros genéticos pueden diferir entre categorías de rasgos. En este estudio se caracterizaron los patrones de varianza y covarianza fenotípica y se realizaron estimaciones de heredabilidad (h2) y correlaciones genéticas de rasgos morfológicos y fisiológicos en una población de Zamia obliqua (Zamiaceae: Cycadales). Se probaron las hipótesis de que la varianza y la heredabilidad de rasgos morfológicos son mayores que las de rasgos fisiológicos, y que las correlaciones fenotípicas y genéticas son mayores dentro que entre las categorías de rasgos. Los valores de varianza fenotípica fueron mayores en los rasgos fisiológicos comparados con los caracteres morfológicos. Los estimativos de heredabilidad sugieren que los caracteres morfológicos presentan mayor varianza genética que los rasgos fisiológicos. Por otro lado, no se obtuvieron correlaciones genéticas significativas entre los rasgos. Sin embargo, las correlaciones fenotípicas muestran mayor correlación dentro de los caracteres morfológicos que dentro de los fisiológicos o entre rasgos morfológicos y fisiológicos. Estas estimaciones de parámetros genéticos permiten construir hipótesis sobre la evolución de caracteres fenotípicos en poblaciones naturales, y son aportes importantes al estudio de la ecología evolutiva de especies no modelo y sus poblaciones en hábitats naturales.
Descargas
Citas
Andrew RL, Peakall R, Wallis IR, Wood JT, Knight EJ, Foley WJ. 2005. Marker-based quantitative genetics in the wild?: the heritability and genetic correlation of chemical defenses in eucalyptus. Genetics, 171 (4): 1989-1998.
Bessega C, Saidman BO, Darquier MR, Ewens M, Sánchez L, Rozenberg P, Vilardi JC. 2009. Consistency between marker- and genealogy- based heritability estimates in an experimental stand of Prosopis alba (Leguminosae). American Journal of Botany, 96 (2): 458-465.
Bouvet J-M, Kelly B, Sanou H, Allal F. 2008. Comparison of marker- and pedigree-based methods for estimating heritability in an agroforestry population of Vitellaria paradoxa C. F. Gaertn. (shea tree). Genetic Resources and Crop Evolution, 55: 1291-1301.
Buehler M, Vézina F, Goymann W, Schwabl I, Versteegh M, Btieleman I. 2012. Independence among physiological traits suggests flexibility.in the face of ecological demands on phenotypes. Journal of Evolutionary Biology, 25: 1600-1613.
Castellanos M, Alcantara J, Rey P, Bastida J. 2011. Intra-population comparison of vegetative and floral trait heritabilities estimated from molecular markers in wild Aquilegia populations. Molecular Ecology, 20: 3513-3524.
Coltman D. 2005. Testing marker-based estimates of heritability in the wild. Molecular Ecology, 14: 2593-2599.
Culley T, Dunbar-Wallis A, Sakai A, Weller S, Mishio S, Campbell D, Herzena M. 2006. Genetic variation of ecophysiological traits in two gynodioecious species of Schiedea (Caryophyllaceae). New Phytologist, 169: 589-601.
Doyle J, Doyle J. 1990. Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.
Excoffier L, Lischer H. 2010.Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10: 564-567.
Frentiu F, Clegg S, Chittock J, Burke T, Blows M, Owens I. 2008. Pedigree- free animal models: the relatedness matrix reloaded. Proceeding of Royal Society B: Biological Sciences, 275: 639-647.
Garant D, Kruuk L. 2005. How to use molecular marker data to measure evolutionary parameters in wild populations. Molecular Ecology, 14: 1843-1859.
García-Verdugo C, Méndez M, Velázquez-Rosas N, Balaguer L. 2010. Differential morphological and physiological responses across insular environments: phenotypic expression and heritability of light-related traits in Olea europaea. Oecologia, 164: 647-655.
Geber M, Griffen L. 2003. Inheritance and natural selection on functional traits. International Journal of Plant Sciences, 164 (3 Suppl.): S21-S42.
Gómez J, Abdelaziz M, Muñoz J, Perfectti F. 2009. Heritability and genetic correlation of corolla shape and size in Erysimummedio hispanicum. Evolution, 63 (7): 1820-1831.
Hardy J, Vekemans X. 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2: 618-620.
Hedrick PW. 2005. Genetics of populations. 3rd ed. Boston (U. S. A.): Jones and Bartlett. p. 274.
Herrera C, Bazaga P. 2009. Quantifying the genetic component of phenotypic variation in unpedigreed wild plants: tailoring genomic scan for within-population use. Molecular Ecology, 18: 2602-2614.
Jahn C, Mckay J, Mauleon R, Stephens J, Mcnally K, Bush D, Leung H, Leach J. 2011. Genetic variation in biomass traits among 20 diverse rice varieties. Plant Physiology, 155: 157-168.
Johnson M, Agrawal A, Maron I, Salminen J. 2009. Heritability, covariation and natural selection on 24 traits of common evening primrose (Oenothera biennis) from a field experiment. Journal of Evolutionary Biology, 22: 1295-1307.
López-Gallego C, O’neil P. 2010. Life-history variation following habitat degradation associated with differing fine-scale spatial genetic structure in a rainforest cycad. Population Ecology, 52: 191-201.
Lynch M, Ritland K. 1999. Estimation of pairwise relatedness with molecular markers. Genetics, 152: 1753-1766.
McCleery R, Pettifor R, Armbruster P, Meyer K, Sheldon B, Perrins M. 2004. Components of variance underlying fitness in a natural population of the great tit Parus major. The American Naturalist, 164 (3): E62–E7
Mcglothlin J, Parker P, Nolan V, Ketterson E. 2005. Correlational selection leads to genetic integration of body size and an attractive plumage trait in dark-eyed juncos. Evolution, 59: 658-671.
Norstog K, Nicholls T. 1997. The biology of the cycads. New York (U. S. A.): Cornell University Press. p. 363.
Oosterhout C, Hutchinson W, Wills P, Shipley P. 2004. MICROCHECKER: software for indentifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4: 535-538.
Queller D, Goodnight K. 1989. Estimating relatedness using genetic markers. Evolution, 43: 258-275.
Ritland K. 1996. A marker-based method for inferences about quantitative inheritance in natural populations. Evolution, 50: 1062-1073.
Ritland K. 2000. Marker-inferred relatedness as a tool for detecting heritability in nature. Molecular Ecology, 9: 1195-1204
Roff D. 1997. Evolutionary quantitative genetics. New York (U. S. A.): Chapman & Hall. p. 493.
Schneider C, Rasband S, Eliceiri K. 2012. NIH Image to Image J: 25 years of image analysis. Nature Methods, 9: 671-675.
Shikano T. 2008. Estimation of quantitative genetic parameters using marker-inferred relatedness in Japanese flounder: A case study of upward bias. Journal of Heredity, 99 (2): 94-104.
SPSS Inc. 2008. SPSS Statistics for Windows, Software Version 17.0. Chicago: SPSS Inc. Released. Stevenson D. 2004. Cycads of Colombia. The Botanical Review, 70 (2): 194-234.
Teplitsky C, Mills J, Yarrall J, Merila J. 2009. Heritability of fitness components in a wild bird population. Evolution, 63-3: 716-726.
Thomas S, Hil W. 2000. Estimating quantitative genetic parameters using sibships reconstructed from marker data. Genetics, 155: 1961-1972.
Wang J. 2002. An estimator for pairwise relatedness using molecular markers. Genetics, 160: 1203-1215.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores autorizan de forma exclusiva, a la revista Actualidades Biológicas a editar y publicar el manuscrito sometido en caso de ser recomendada y aceptada su publicación, sin que esto represente costo alguno para la Revista o para la Universidad de Antioquia.
Todas las ideas y opiniones contenidas en los artículos son de entera responsabilidad de los autores. El contenido total de los números o suplementos de la revista, está protegido bajo Licencia Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional, por lo que no pueden ser empleados para usos comerciales, pero sí para fines educativos. Sin embargo, por favor, mencionar como fuente a la revista Actualidades Biológicas y enviar una copia de la publicación en que fue reproducido el contenido.