Bioreduction in vitro of hexavalent chromium using a microbial consortium
DOI:
https://doi.org/10.17533/udea.acbi/v46n120a04Keywords:
Bioremediation, Hexavalent chromium, Total chromium, removal, microbial consortiumAbstract
Constant industrial development has increased the chromium use, resulting in chromium discharge into wastewater. The implementation of microbial bioremediation has been proposed as an ecological, efficient and economical alternative for the implementation of microorganisms to reduce chromium to a less toxic form. Our objective was to evaluate the Cr (VI) removal capacity of microbial consortia at different concentrations. Accordingly, an activation and identification of microorganisms from chromium-containing wastewater was carried out. Seven microbial consortia were established and their synergy, individual and consortium growth curves were evaluated. Subsequently, a scaled adaptation of the consortia was carried out with eight concentrations of Cr (VI). Reciprocal regression models and growth curves were used to identify the consortium with the highest removal. Synergy was found in the consortia evaluated; growth curves of consortia showed higher absorbance than individually, with higher absorption in the Candida famata-Serratia sp. Consortium. However, in the scaled adaptation, greater Cr (VI) reduction capacity was demonstrated in Candida tropicalis-Serratia sp. with 79.20% at a concentration of 100 ppm with a total chromium reduction of 31.12%. At the same time, a greater adaptation of the consortia to high concentrations of Cr (VI) was identified. This is the first research to report C. tropicalis-Serratia sp. microbial consortium with a positive interaction and higher metabolic reduction capacity, which will have a positive impact on bioremediation of chromium-containing wastewater.
Downloads
References
Alfonso, C., López, M., Arechavala, A., Perrone, M. del C., Guelfand, L., & Bianchi, M. (2010). Identificación presuntiva de Candida spp. y de otras levaduras de importancia clínica: utilidad de brilliance Candida Agar. Revista Iberoamericana de Micología, 27(2), 90-93. https://doi.org/10.1016/j.riam.2010.01.008
American Public Health Association, American Water Works Association, Eugene W. Rice, Laura Bridgewater, Water Environment Federation [Ed.]. (2012). Standard Methods for the Examination of Water and Wastewater. Washington D.C., USA: American Public Health Association. https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1670401
Argote-Vega, F. E., Suarez-Montenegro, Z. J., Tobar-Delgado, M. E., Perez-Alvarez, J. A., Hurtado-Benavides, A. M., & Delgado-Ospina, J. (2017). Evaluation of the inability capacity of essential oils in Staphylococcus aureus and Escherichia coli. Revista Unicauca Biotecnología en el Sector Agropecuario y Agroindustrial, 15(2), 52-60. https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/593
Avendaño-Flores, Y. S. (2012, Diciembre 10). Biorreducción de Cr(VI) a Cr(III) por bacterias resistentes a cromo aisladas del río lerma [Tesis de maestría]. Universidad Autónoma del Estado de México, Ciudad de México. http://ri.uaemex.mx/handle/20.500.11799/80076
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
Bou, G., Fernández-Olmos, A., García, C., Sáez-Nieto, J. A., & Valdezate, S. (2011). Métodos de identificación bacteriana en el laboratorio de microbiología. Enfermedades Infecciosas y Microbiología Clínica, 29(8), 601-608. https://doi.org/10.1016/j.eimc.2011.03.012
Ceballos, D., Pinta-Melo, J., Fernández Izquierdo, P., Ibarguen-Mondragon, E., Hidalgo Bonilla, S., & Burbano-Rosero, E. (2017). Efficiency in the reduction of chromium by a wild bacterium in a batch treatment type using residual water substrate from the municipality of Pasto, Colombia. Universidad y Salud, 19, 102-115. https://doi.org/10.22267/rus.171901.74
Díaz, N. A., Ruiz, J. A. B., Reyes, E. F., Cejudo, A. G., Novo, J. J., Peinado, J. P., Meléndez-Valdés, F. T., & Fiñana, I. T. (2010). Espectrofometría: Espectros de absorción y cuantificación colorimétrica de biomoléculas. Universidad de Córdoba, 1-8.
Dogan, N. M., Kantar, C., Gulcan, S., Dodge, C. J., Yilmaz, B. C., & Mazmanci, M. A. (2011). Chromium(VI) bioremoval by Pseudomonas bacteria: Role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environmental Science & Technology, 45(6), 2278-2285. https://doi.org/10.1021/es102095t
Elahi, A., Arooj, I., Bukhari, D. A., & Rehman, A. (2020). Successive use of microorganisms to remove chromium from wastewater. Applied Microbiology and Biotechnology, 104(9), 3729-3743. https://doi.org/10.1007/s00253-020-10533-y
Fontalvo, J. L. (2012). Manual de prácticas de laboratorio de Microbiología (1.a ed.). Editorial Unimagdalena. https://doi.org/10.2307/j.ctt1zk0mfb
Gajic, I., Kabic, J., Kekic, D., Jovicevic, M., Milenkovic, M., Mitic Culafic, D., Trudic, A., Ranin, L., & Opavski, N. (2022). Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics, 11(4), 427. https://doi.org/10.3390/antibiotics11040427
Gashaw, M., Marame, Z. H., Abera, M., & Ali, S. (2021). Assessment of gut bacteria profile and antibiotic resistance pattern among psychotropic drug users: comparative cross-sectional study. Infection and Drug Resistance, 14, 1875-1881. https://doi.org/10.2147/IDR.S305992
Ge, S., Gu, J., Ai, W., & Dong, X. (2021). Biotreatment of pyrene and Cr(VI) combined water pollution by mixed bacteria. Scientific Reports, 11(1), 114. https://doi.org/10.1038/s41598-020-80053-2
He, Y., Dong, L., Zhou, S., Jia, Y., Gu, R., Bai, Q., Gao, J., Li, Y., & Xiao, H. (2018). Chromium resistance characteristics of Cr(VI) resistance genes ChrA and ChrB in Serratia sp. S2. Ecotoxicology and Environmental Safety, 157, 417-423. https://doi.org/10.1016/j.ecoenv.2018.03.079
He, X., Wu, J., & He, S. (2019). Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Human and Ecological Risk Assessment, 25, 32-51. https://doi.org/10.1080/10807039.2018.1531693
Heredia, M., Layedra-Almeida, A. P., Torres, Y., & Toulkeridis, T. (2022). Evaluation of a microbial consortium and selection of a support in an anaerobic reactor directed to the bio-treatment of wastewater of the textile industry. Sustainability, 14(14), 8889. https://doi.org/10.3390/su14148889
Khanpour, E., & Partovinia, A. (2021). Synergistic and Antagonistic Effects of Microbial Co-culture on Bioremediation of Polluted Environments (pp. 229-265). Singapore: Springer Nature. https://doi.org/10.1007/978-981-15-7455-9_10
Kholisa, B., Matsena, M., & Chirwa, E. M. N. (2021). Evaluation of Cr(VI) reduction using indigenous bacterial consortium isolated from a municipal wastewater sludge: batch and kinetic studies. Catalysts, 11(9), 1100. https://doi.org/10.3390/catal11091100
Leonard, J., & Mishra, S. (2022). Optimization of parameters for the detoxification of Cr(VI) by the microbial consortium developed from the isolates of chromite mines. Geomicrobiology Journal, 39(3-5), 328-340. https://doi.org/10.1080/01490451.2021.1998257
Liu, W., Li, J., Zheng, J., Song, Y., Shi, Z., Lin, Z., & Chai, L. (2020). Different pathways for Cr(III) oxidation: implications for Cr(VI) reoccurrence in reduced chromite ore processing residue. Environmental Science & Technology, 54(19), 11971-11979. https://doi.org/10.1021/acs.est.0c01855
López, M. A. H., Suarez, F. L., & Chamorro, N. L. (2017). Identificación de microorganismos aislados a partir de lodos residuales de una planta de tratamiento de un sector curtidor del Quindío. Revista de la Asociación Colombiana de Ciencias Biológicas, 1(29), 103-118. https://revistaaccb.org/r/index.php/accb/article/view/148/143
Ma, L., Xu, J., Chen, N., Li, M., & Feng, C. (2019). Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium. Ecotoxicology and Environmental Safety, 170, 763-770. https://doi.org/10.1016/j.ecoenv.2018.12.041
Malaviya, P., & Singh, A. (2016). Bioremediation of chromium solutions and chromium containing wastewaters. Critical Reviews in Microbiology, 40(2), 607-633. https://doi.org/10.3109/1040841X.2014.974501
Mtimunye, P. J., & Chirwa, E. M. N. (2014). Finite difference simulation of biological chromium (VI) reduction in aquifer media columns. Water SA, 40(2), 359-368 https://doi.org/10.4314/wsa.v40i2.18
Núñez, A. P., Angeles, F. T., Pichihua, P. M., & Acosta, G. Y. (2018). Remoción de cromo de efluentes de la industria curtiembre mediante electrodiálisis. Industrial Data, 21(1), 27-34. https://doi.org/10.15381/idata.v21i1.14908
Qiu, Y., Zhang, Q., Gao, B., Li, M., Fan, Z., Sang, W., Hao, H., & Wei, X. (2020). Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: synergy of adsorption, reduction and transformation. Environmental Pollution, 265, 115018. https://doi.org/10.1016/j.envpol.2020.115018
Rodríguez Yupanqui, M., & Quezada Alvarez, M. A. (2019). Remoción de cromo en efluente de curtiembre por consorcio de levaduras del género Saccharomyces y Pichia. UCV-Scientia, 11(2), 81–91. https://doi.org/10.18050/ucvs.v11i2.2587
Sharma, S., & Adholeya, A. (2012). Hexavalent Chromium Reduction in Tannery Effluent by Bacterial Species Isolated from Tannery Effluent Contaminated Soil. Journal of Environmental Science and Technology, 5(3), 142-154. https://doi.org/10.3923/jest.2012.142.154
Silva, H. D. D., & Aguilera, L. A. P. (2020). Identificación molecular de microorganismos aislados de quesera artesanal ubicada en la Libertad-Chontales, Nicaragua. Revista Ciencia y Tecnología El Higo, 10(2), 62–78. https://doi.org/10.5377/elhigo.v10i2.10554
Singh, R., Ryu, J., & Kim, S. W. (2019). Microbial consortia including methanotrophs: some benefits of living together. Journal of Microbiology, 57(11), 939-952. https://doi.org/10.1007/s12275-019-9328-8
Soto-Rueda, E. M., Landazuri, P., & Loango, N. (2017). Remoción de cromo hexavalente de aguas residuales con microorganismos adaptados a medios ricos en cromo. Revista de la Asociación Colombiana de Ciencias Biológicas, 29, 49-57. https://ri.conicet.gov.ar/handle/11336/94110
Su, Y., Sun, S., Liu, Q., Zhao, C., Li, L., Chen, S., Chen, H., Wang, Y., & Tang, F. (2022). Characterization of the simultaneous degradation of pyrene and removal of Cr(VI) by a bacteria consortium YH. Science of The Total Environment, 853, 158388. https://doi.org/10.1016/j.scitotenv.2022.158388
Tang, X., Huang, Y., Li, Y., Wang, L., Pei, X., Zhou, D., He, P., & Hughes, S. S. (2021). Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. Ecotoxicology and Environmental Safety, 208, 111699. https://doi.org/10.1016/j.ecoenv.2020.111699
Tobón, G. A. J., & Hoyos, A. V. (2012). Tinción de gram de tejido: alcances y limitaciones. Medicina y Laboratorio, 18(11-12), 557-573. https://medicinaylaboratorio.com/index.php/myl/article/view/313
Vélez-Zuluaga, J. A. (2018). Estrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediación [Tesis de doctorado]. Universidad Nacional de Colombia, Medellín. https://repositorio.unal.edu.co/handle/unal/79588
World Health Organization (2021). Guidelines for drinking-water quality, 4th ed., incorporating the 1st addendum (chapters). https://www.who.int/publications/m/item/guidelines-for-drinking-water-quality-4th-ed.-incorporating-the-1st-addendum-(chapters)
Yazdanpanah, A., & Khaithir, T. M. N. (2013). Issues in identifying germ tube positive yeasts by conventional methods. Journal of Clinical Laboratory Analysis, 28(1), 1-9. https://doi.org/10.1002/jcla.21635
Zhang, S., Merino, N., Okamoto, A., & Gedalanga, P. (2018). Interkingdom microbial consortia mechanisms to guide biotechnological applications. Microbial Biotechnology, 11(5), 833-847. https://doi.org/10.1111/1751-7915.13300
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Actualidades Biológicas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors exclusively authorize the Actualidades Biológicas journal to edit and publish the submitted manuscript if its publication is recommended and accepted, without this representing any cost to the Journal or the University of Antioquia.
All the ideas and opinions contained in the articles are sole responsibility of the authors. The total content of the issues or supplements of the journal is protected under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, so they cannot be used for commercial purposes, but for educational purposes. However, please mention the Actualidades Biológicas journal as a source and send a copy of the publication in which the content was reproduced.


