Bioreduction in vitro of hexavalent chromium using a microbial consortium

Authors

DOI:

https://doi.org/10.17533/udea.acbi/v46n120a04

Keywords:

Bioremediation, Hexavalent chromium, Total chromium, removal, microbial consortium

Abstract

Constant industrial development has increased the chromium use, resulting in chromium discharge into wastewater. The implementation of microbial bioremediation has been proposed as an ecological, efficient and economical alternative for the implementation of microorganisms to reduce chromium to a less toxic form. Our objective was to evaluate the Cr (VI) removal capacity of microbial consortia at different concentrations. Accordingly, an activation and identification of microorganisms from chromium-containing wastewater was carried out. Seven microbial consortia were established and their synergy, individual and consortium growth curves were evaluated. Subsequently, a scaled adaptation of the consortia was carried out with eight concentrations of Cr (VI). Reciprocal regression models and growth curves were used to identify the consortium with the highest removal. Synergy was found in the consortia evaluated; growth curves of consortia showed higher absorbance than individually, with higher absorption in the Candida famata-Serratia sp. Consortium. However, in the scaled adaptation, greater Cr (VI) reduction capacity was demonstrated in Candida tropicalis-Serratia sp. with 79.20% at a concentration of 100 ppm with a total chromium reduction of 31.12%. At the same time, a greater adaptation of the consortia to high concentrations of Cr (VI) was identified. This is the first research to report C. tropicalis-Serratia sp. microbial consortium with a positive interaction and higher metabolic reduction capacity, which will have a positive impact on bioremediation of chromium-containing wastewater.

|Abstract
= 682 veces | PDF
= 200 veces| | PDF (ESPAÑOL (ESPAÑA))
= 19 veces| | HTML
= 12 veces| | XML
= 28 veces| | EPUB
= 9 veces| | SUPPLEMENTARY MATERIAL
= 17 veces| | MATERIAL SUPLEMENTARIO (ESPAÑOL (ESPAÑA))
= 32 veces| | RESUMEN GRÁFICO (ESPAÑOL (ESPAÑA))
= 16 veces|

Downloads

Download data is not yet available.

References

Alfonso, C., López, M., Arechavala, A., Perrone, M. del C., Guelfand, L., & Bianchi, M. (2010). Identificación presuntiva de Candida spp. y de otras levaduras de importancia clínica: utilidad de brilliance Candida Agar. Revista Iberoamericana de Micología, 27(2), 90-93. https://doi.org/10.1016/j.riam.2010.01.008

American Public Health Association, American Water Works Association, Eugene W. Rice, Laura Bridgewater, Water Environment Federation [Ed.]. (2012). Standard Methods for the Examination of Water and Wastewater. Washington D.C., USA: American Public Health Association. https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1670401

Argote-Vega, F. E., Suarez-Montenegro, Z. J., Tobar-Delgado, M. E., Perez-Alvarez, J. A., Hurtado-Benavides, A. M., & Delgado-Ospina, J. (2017). Evaluation of the inability capacity of essential oils in Staphylococcus aureus and Escherichia coli. Revista Unicauca Biotecnología en el Sector Agropecuario y Agroindustrial, 15(2), 52-60. https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/593

Avendaño-Flores, Y. S. (2012, Diciembre 10). Biorreducción de Cr(VI) a Cr(III) por bacterias resistentes a cromo aisladas del río lerma [Tesis de maestría]. Universidad Autónoma del Estado de México, Ciudad de México. http://ri.uaemex.mx/handle/20.500.11799/80076

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005

Bou, G., Fernández-Olmos, A., García, C., Sáez-Nieto, J. A., & Valdezate, S. (2011). Métodos de identificación bacteriana en el laboratorio de microbiología. Enfermedades Infecciosas y Microbiología Clínica, 29(8), 601-608. https://doi.org/10.1016/j.eimc.2011.03.012

Ceballos, D., Pinta-Melo, J., Fernández Izquierdo, P., Ibarguen-Mondragon, E., Hidalgo Bonilla, S., & Burbano-Rosero, E. (2017). Efficiency in the reduction of chromium by a wild bacterium in a batch treatment type using residual water substrate from the municipality of Pasto, Colombia. Universidad y Salud, 19, 102-115. https://doi.org/10.22267/rus.171901.74

Díaz, N. A., Ruiz, J. A. B., Reyes, E. F., Cejudo, A. G., Novo, J. J., Peinado, J. P., Meléndez-Valdés, F. T., & Fiñana, I. T. (2010). Espectrofometría: Espectros de absorción y cuantificación colorimétrica de biomoléculas. Universidad de Córdoba, 1-8.

Dogan, N. M., Kantar, C., Gulcan, S., Dodge, C. J., Yilmaz, B. C., & Mazmanci, M. A. (2011). Chromium(VI) bioremoval by Pseudomonas bacteria: Role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environmental Science & Technology, 45(6), 2278-2285. https://doi.org/10.1021/es102095t

Elahi, A., Arooj, I., Bukhari, D. A., & Rehman, A. (2020). Successive use of microorganisms to remove chromium from wastewater. Applied Microbiology and Biotechnology, 104(9), 3729-3743. https://doi.org/10.1007/s00253-020-10533-y

Fontalvo, J. L. (2012). Manual de prácticas de laboratorio de Microbiología (1.a ed.). Editorial Unimagdalena. https://doi.org/10.2307/j.ctt1zk0mfb

Gajic, I., Kabic, J., Kekic, D., Jovicevic, M., Milenkovic, M., Mitic Culafic, D., Trudic, A., Ranin, L., & Opavski, N. (2022). Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics, 11(4), 427. https://doi.org/10.3390/antibiotics11040427

Gashaw, M., Marame, Z. H., Abera, M., & Ali, S. (2021). Assessment of gut bacteria profile and antibiotic resistance pattern among psychotropic drug users: comparative cross-sectional study. Infection and Drug Resistance, 14, 1875-1881. https://doi.org/10.2147/IDR.S305992

Ge, S., Gu, J., Ai, W., & Dong, X. (2021). Biotreatment of pyrene and Cr(VI) combined water pollution by mixed bacteria. Scientific Reports, 11(1), 114. https://doi.org/10.1038/s41598-020-80053-2

He, Y., Dong, L., Zhou, S., Jia, Y., Gu, R., Bai, Q., Gao, J., Li, Y., & Xiao, H. (2018). Chromium resistance characteristics of Cr(VI) resistance genes ChrA and ChrB in Serratia sp. S2. Ecotoxicology and Environmental Safety, 157, 417-423. https://doi.org/10.1016/j.ecoenv.2018.03.079

He, X., Wu, J., & He, S. (2019). Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Human and Ecological Risk Assessment, 25, 32-51. https://doi.org/10.1080/10807039.2018.1531693

Heredia, M., Layedra-Almeida, A. P., Torres, Y., & Toulkeridis, T. (2022). Evaluation of a microbial consortium and selection of a support in an anaerobic reactor directed to the bio-treatment of wastewater of the textile industry. Sustainability, 14(14), 8889. https://doi.org/10.3390/su14148889

Khanpour, E., & Partovinia, A. (2021). Synergistic and Antagonistic Effects of Microbial Co-culture on Bioremediation of Polluted Environments (pp. 229-265). Singapore: Springer Nature. https://doi.org/10.1007/978-981-15-7455-9_10

Kholisa, B., Matsena, M., & Chirwa, E. M. N. (2021). Evaluation of Cr(VI) reduction using indigenous bacterial consortium isolated from a municipal wastewater sludge: batch and kinetic studies. Catalysts, 11(9), 1100. https://doi.org/10.3390/catal11091100

Leonard, J., & Mishra, S. (2022). Optimization of parameters for the detoxification of Cr(VI) by the microbial consortium developed from the isolates of chromite mines. Geomicrobiology Journal, 39(3-5), 328-340. https://doi.org/10.1080/01490451.2021.1998257

Liu, W., Li, J., Zheng, J., Song, Y., Shi, Z., Lin, Z., & Chai, L. (2020). Different pathways for Cr(III) oxidation: implications for Cr(VI) reoccurrence in reduced chromite ore processing residue. Environmental Science & Technology, 54(19), 11971-11979. https://doi.org/10.1021/acs.est.0c01855

López, M. A. H., Suarez, F. L., & Chamorro, N. L. (2017). Identificación de microorganismos aislados a partir de lodos residuales de una planta de tratamiento de un sector curtidor del Quindío. Revista de la Asociación Colombiana de Ciencias Biológicas, 1(29), 103-118. https://revistaaccb.org/r/index.php/accb/article/view/148/143

Ma, L., Xu, J., Chen, N., Li, M., & Feng, C. (2019). Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium. Ecotoxicology and Environmental Safety, 170, 763-770. https://doi.org/10.1016/j.ecoenv.2018.12.041

Malaviya, P., & Singh, A. (2016). Bioremediation of chromium solutions and chromium containing wastewaters. Critical Reviews in Microbiology, 40(2), 607-633. https://doi.org/10.3109/1040841X.2014.974501

Mtimunye, P. J., & Chirwa, E. M. N. (2014). Finite difference simulation of biological chromium (VI) reduction in aquifer media columns. Water SA, 40(2), 359-368 https://doi.org/10.4314/wsa.v40i2.18

Núñez, A. P., Angeles, F. T., Pichihua, P. M., & Acosta, G. Y. (2018). Remoción de cromo de efluentes de la industria curtiembre mediante electrodiálisis. Industrial Data, 21(1), 27-34. https://doi.org/10.15381/idata.v21i1.14908

Qiu, Y., Zhang, Q., Gao, B., Li, M., Fan, Z., Sang, W., Hao, H., & Wei, X. (2020). Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: synergy of adsorption, reduction and transformation. Environmental Pollution, 265, 115018. https://doi.org/10.1016/j.envpol.2020.115018

Rodríguez Yupanqui, M., & Quezada Alvarez, M. A. (2019). Remoción de cromo en efluente de curtiembre por consorcio de levaduras del género Saccharomyces y Pichia. UCV-Scientia, 11(2), 81–91. https://doi.org/10.18050/ucvs.v11i2.2587

Sharma, S., & Adholeya, A. (2012). Hexavalent Chromium Reduction in Tannery Effluent by Bacterial Species Isolated from Tannery Effluent Contaminated Soil. Journal of Environmental Science and Technology, 5(3), 142-154. https://doi.org/10.3923/jest.2012.142.154

Silva, H. D. D., & Aguilera, L. A. P. (2020). Identificación molecular de microorganismos aislados de quesera artesanal ubicada en la Libertad-Chontales, Nicaragua. Revista Ciencia y Tecnología El Higo, 10(2), 62–78. https://doi.org/10.5377/elhigo.v10i2.10554

Singh, R., Ryu, J., & Kim, S. W. (2019). Microbial consortia including methanotrophs: some benefits of living together. Journal of Microbiology, 57(11), 939-952. https://doi.org/10.1007/s12275-019-9328-8

Soto-Rueda, E. M., Landazuri, P., & Loango, N. (2017). Remoción de cromo hexavalente de aguas residuales con microorganismos adaptados a medios ricos en cromo. Revista de la Asociación Colombiana de Ciencias Biológicas, 29, 49-57. https://ri.conicet.gov.ar/handle/11336/94110

Su, Y., Sun, S., Liu, Q., Zhao, C., Li, L., Chen, S., Chen, H., Wang, Y., & Tang, F. (2022). Characterization of the simultaneous degradation of pyrene and removal of Cr(VI) by a bacteria consortium YH. Science of The Total Environment, 853, 158388. https://doi.org/10.1016/j.scitotenv.2022.158388

Tang, X., Huang, Y., Li, Y., Wang, L., Pei, X., Zhou, D., He, P., & Hughes, S. S. (2021). Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. Ecotoxicology and Environmental Safety, 208, 111699. https://doi.org/10.1016/j.ecoenv.2020.111699

Tobón, G. A. J., & Hoyos, A. V. (2012). Tinción de gram de tejido: alcances y limitaciones. Medicina y Laboratorio, 18(11-12), 557-573. https://medicinaylaboratorio.com/index.php/myl/article/view/313

Vélez-Zuluaga, J. A. (2018). Estrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediación [Tesis de doctorado]. Universidad Nacional de Colombia, Medellín. https://repositorio.unal.edu.co/handle/unal/79588

World Health Organization (2021). Guidelines for drinking-water quality, 4th ed., incorporating the 1st addendum (chapters). https://www.who.int/publications/m/item/guidelines-for-drinking-water-quality-4th-ed.-incorporating-the-1st-addendum-(chapters)

Yazdanpanah, A., & Khaithir, T. M. N. (2013). Issues in identifying germ tube positive yeasts by conventional methods. Journal of Clinical Laboratory Analysis, 28(1), 1-9. https://doi.org/10.1002/jcla.21635

Zhang, S., Merino, N., Okamoto, A., & Gedalanga, P. (2018). Interkingdom microbial consortia mechanisms to guide biotechnological applications. Microbial Biotechnology, 11(5), 833-847. https://doi.org/10.1111/1751-7915.13300

Published

2024-02-06

How to Cite

Serna Toro, S., Lora Suarez, F. M., & Loango Chamorro, N. (2024). Bioreduction in vitro of hexavalent chromium using a microbial consortium. Actualidades Biológicas, 46(120). https://doi.org/10.17533/udea.acbi/v46n120a04

Issue

Section

Full articles