Sonic Hedgehog (SHH) pathway in the adult brain: key signaling for astrocyte reactivation and brain repair

Authors

  • Olga M. Bermúdez-Muñoz Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.acbi.v38n105a07

Keywords:

astrocyte, brain injury, glia, Hedgehog signaling, tissue repair

Abstract

While neurons play a key role in neurotransmission in the nervous central system (CNS) of animals, glial cells are crucial for neuron support and brain maintenance. Recent studies reveal that glial cells regulate the release and reuptake of neurotransmitters, pyruvate and glutathione metabolism, ion buffering, the organization of blood brain barrier and ensures the production of myelin and cerebrospinal fluid. The activity of glial cells is coordinated by the communication between neurons and the glia. Among cell signals in the brain, Sonic Hedgehog (SHH) pathway plays a key role regulating the development and the patterning of the central nervous system. In the adult brain, SHH has been found to be secreted by neurons and astrocytes, and to regulate in this manner, neuro-glial interactions. Upon brain injury, SHH signaling appears to be (re)-activated in the adult brain and may be related with tissue regeneration. The glial cells and more particularly astrocytes are key cells responding to brain injury and participating in brain repair. Interestingly, astrocyte response is mediated by SHH activation in these cells that elicits diverse cell reactions in the brain leading to neuroprotection and reinforcement of the blood brain barrier upon injury. This review highlights the important role of glial cells and more specifically of astrocytes in brain physiology, the implication of SHH signaling in brain organization and function, and finally, how SHH signaling regulates astrocyte re-activation and cell response to tissue injury and repair in the brain in the adult organism.

|Abstract
= 2912 veces | PDF (ESPAÑOL (ESPAÑA))
= 166 veces| | HTML (ESPAÑOL (ESPAÑA))
= 21 veces|

Downloads

Download data is not yet available.

Author Biography

Olga M. Bermúdez-Muñoz, Universidad de Antioquia

Docente. Grupo de Investigación Genética, Regeneración y Cáncer, Instituto de Biología, Universidad de Antioquia. A. A. 1226. Medellín (Antioquia), Colombia.

References

Aberger F, Ruiz I, Altaba A. 2014. Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy. Seminars in Cell and Developmental Biology, 33: 93-104. DOI: https://doi.org/10.1016/j.semcdb.2014.05.003

Allen NJ. 2013. Role of glia in developmental synapse formation. Current Opinion in Neurobiology, 23: 1027-1033. DOI: https://doi.org/10.1016/j.conb.2013.06.004

Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A. 2011. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science, 334: 1727-1731. DOI: https://doi.org/10.1126/science.1206936

Alvarez JI, Katayama T, Prat A. 2013. Glial influence on the blood brain barrier. Glia, 61: 1939-1958. DOI: https://doi.org/10.1002/glia.22575

Álvarez-Buylla A, Ihrie RA. 2014. Sonic hedgehog signaling in the postnatal brain. Seminars in Cell and Developmental Biology, 33: 105-111. DOI: https://doi.org/10.1016/j.semcdb.2014.05.008

Araújo GLL, Araújo JAM, Schroeder T, Tort ABL, Costa MR. 2014. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis. Frontiers in Cellular Neuroscience, 8: 77. DOI: https://doi.org/10.3389/fncel.2014.00077

Bachoo RM, Kim RS, Ligon KL, Maher EA, Brennan C, Billings N, Chan S, Li C, Rowitch DH, Wong WH, DePinho RA. Molecular diversity of astrocytes with implications for neurological disorders. 2004. Proceedings of the National Academy of Sciences of the United States of America, 101: 8384-8389. DOI: https://doi.org/10.1073/pnas.0402140101

Bardehle S, Krüger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert HJ, Theis FJ, Meyer-Luehmann M, Bechmann I, Dimou L, Götz M. 2013. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nature Neuroscience, 16: 580-586. DOI: https://doi.org/10.1038/nn.3371

Barres BA. 1999. A new role for glia: generation of neurons! Cell, 97: 667-670. DOI: https://doi.org/10.1016/S0092-8674(00)80777-1

Barres BA. 2008. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron, 60: 430-440. DOI: https://doi.org/10.1016/j.neuron.2008.10.013

Bayraktar OA, Fuentealba LC, Alvarez-Buylla A, Rowitch DH. 2015. Astrocyte development and heterogeneity. Cold Spring Harbor Perspectives in Biology [Internet], 7: a020362. Accessed: 25 September 2015. Available from: <http://cshperspectives.cshlp.org/content/7/1/a020362>. DOI: https://doi.org/10.1101/cshperspect.a020362

Ben Achour S, Pascual O. 2010. Glia: the many ways to modulate synaptic plasticity. Neurochemistry International, 57: 440-445. DOI: https://doi.org/10.1016/j.neuint.2010.02.013

Briscoe J, Thérond PP. 2013. The mechanisms of Hedgehog signalling and its roles in development and disease. Nature Reviews. Molecular Cell Biology, 14: 416-429. DOI: https://doi.org/10.1038/nrm3598

Campbell K, Götz M. 2002. Radial glia: multi-purpose cells for vertebrate brain development. Trends in Neurosciences, 25: 235-238. DOI: https://doi.org/10.1016/S0166-2236(02)02156-2

Chaboub LS, Deneen B. 2012. Developmental origins of astrocyte heterogeneity: the final frontier of CNS development. Developmental Neuroscience, 34: 379-388. DOI: https://doi.org/10.1159/000343723

Chan WY, Kohsaka S, Rezaie P. 2007. The origin and cell lineage of microglia: new concepts. Brain Research Reviews, 53: 344-354. DOI: https://doi.org/10.1016/j.brainresrev.2006.11.002

Cheslow L, Alvarez JI. 2016. Glial-endothelial crosstalk regulates blood-brain barrier function. Current Opinion in Pharmacology, 26: 39-46. DOI: https://doi.org/10.1016/j.coph.2015.09.010

Chotard C, Salecker I. 2004. Neurons and glia: team players in axon guidance. Trends in Neuroscience, 27: 655-661. DOI: https://doi.org/10.1016/j.tins.2004.09.001

Chung W-S, Welsh CA, Barres BA, Stevens B. 2015. Do glia drive synaptic and cognitive impairment in disease? Nature Neuroscience, 18: 1539-1545. DOI: https://doi.org/10.1038/nn.4142

Dimou L, Götz M. 2014. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiolical Reviews, 94: 709-737. DOI: https://doi.org/10.1152/physrev.00036.2013

Elsayed M, Magistretti PJ. 2015. A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue. Frontiers in Cellular Neuroscience, 9: 468. DOI: https://doi.org/10.3389/fncel.2015.00468

Eroglu C, Barres BA. 2010. Regulation of synaptic connectivity by glia. Nature, 468: 223-231. DOI: https://doi.org/10.1038/nature09612

Eshed-Eisenbach Y, Peles E. 2013. The making of a node: a co- production of neurons and glia. Current Opinion in Neurobiology, 23: 1049-1056. DOI: https://doi.org/10.1016/j.conb.2013.06.003

Fields RD, Burnstock G. 2006. Purinergic signalling in neuron-glia interactions. Nature Reviews Neuroscience, 7: 423-436. DOI: https://doi.org/10.1038/nrn1928

Fleming JT, He W, Hao C, Ketova T, Pan FC, Wright CCV, Litingtung Y, Chiang C. 2013. The Purkinje neuron acts as a central regulator of spatially and functionally distinct cerebellar precursors. Developmental Cell, 27: 278-292. DOI: https://doi.org/10.1016/j.devcel.2013.10.008

Gorojankina T. 2016. Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction. Cellular and Molecular Life Sciences [Internet]: 1-16. Accessed: 20 November 2015. Available on: <http://link.springer.com/article/10.1007%2Fs00018-015-2127-4>.

Guerrero I, Kornberg TB. 2014. Hedgehog and its circuitous journey from producing to target cells. Seminars in Cell & Developmental Biology, 33: 52-62. DOI: https://doi.org/10.1016/j.semcdb.2014.06.016

Han Y-G, Spassky N, Romaguera-Ros M, Garcia-Verdugo J-M, Aguilar A, Schneider-Maunoury S, Alvarez-Buylla A. 2008. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nature Neuroscience, 11: 277-284. DOI: https://doi.org/10.1038/nn2059

Haydon PG. 2001. GLIA: listening and talking to the synapse. Nature Reviews Neuroscience, 2: 185-193. DOI: https://doi.org/10.1038/35058528

Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson DJ. 2008. Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell, 133: 510-522. DOI: https://doi.org/10.1016/j.cell.2008.02.046

Huangfu D, Anderson KV. 2005. Cilia and Hedgehog responsiveness in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 102: 11325-11330. DOI: https://doi.org/10.1073/pnas.0505328102

Ihrie RA, Shah JK, Harwell CC, Levine JH, Guinto CD, Lezameta M, Kriegstein AR, Alvarez-Buylla A. 2011. Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity. Neuron, 71: 250-262. DOI: https://doi.org/10.1016/j.neuron.2011.05.018

Ingham PW, Nakano Y, Seger C. 2011. Mechanisms and functions of Hedgehog signalling across the metazoa. Nature Review Genetics, 12: 393-406. DOI: https://doi.org/10.1038/nrg2984

Jiang J. 2006. Regulation of Hh/Gli signaling by dual ubiquitin pathways. Cell Cycle [Internet], 5: 2457-2463. Accessed: 12 January 2016. Available on: <http://www.ncbi.nlm.nih.gov/ pubmed/17102630>. DOI: https://doi.org/10.4161/cc.5.21.3406

Jin Y, Raviv N, Barnett A, Bambakidis NC, Filichia E, Luo Y. 2015. The shh signaling pathway is upregulated in multiple cell types in cortical ischemia and influences the outcome of stroke in an animal model. PloS One [Internet], 10: e0124657. Accessed: 23 November 2015. Available on: <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124657>. DOI: https://doi.org/10.1371/journal.pone.0124657

Katoh Y, Katoh M. 2009. Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Current Molecular Medicine, 9: 873-886. DOI: https://doi.org/10.2174/156652409789105570

Khakh BS, Sofroniew MV. 2015. Diversity of astrocyte functions and phenotypes in neural circuits. Nature Neuroscience, 18: 942-952. DOI: https://doi.org/10.1038/nn.4043

Kovacs JJ, Whalen EJ, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz RJ. 2008. Beta-arrestin-mediated localization of smoothened to the primary cilium. Science, 320: 1777-1781. DOI: https://doi.org/10.1126/science.1157983

Lowry N, Goderie SK, Lederman P, Charniga C, Gooch MR, Gracey KD, Banerjee A, Punyani S, Silver J, Kane RS, Stern JF, Temple S. 2012. The effect of long-term release of Shh from implanted biodegradable microspheres on recovery from spinal cord injury in mice. Biomaterials, 33: 2892-2901. DOI: https://doi.org/10.1016/j.biomaterials.2011.12.048

Marazziti D, Di Pietro C, Golini E, Mandillo S, La Sala G, Matteoni R, Tocchini-Valentini GP. 2013. Precocious cerebellum development and improved motor functions in mice lacking the astrocyte cilium-, patched 1-associated Gpr37l1 receptor. Proceedings of the National Academy of Sciences of the United States of America, 110: 16486-16491. DOI: https://doi.org/10.1073/pnas.1314819110

Matus DQ, Magie CR, Pang K, Martindale MQ, Thomsen GH. 2008. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Developmental Biology, 313: 501-518. DOI: https://doi.org/10.1016/j.ydbio.2007.09.032

Miller RH, Szigeti V. 1991. Clonal analysis of astrocyte diversity in neonatal rat spinal cord cultures.Developmental, 113: 353-362. DOI: https://doi.org/10.1242/dev.113.1.353

Milligan ED, Watkins LR. 2009. Pathological and protective roles of glia in chronic pain. Nature Reviews Neuroscience, 10: 23-36. DOI: https://doi.org/10.1038/nrn2533

Miyamura T, Morita N, Baba H, Hase S, Kajimoto T, Tsuji, S, Kawata M, Kato I, Mikoshiba K, Ikenaka K. 1998. Metabolic labeling of a subset of glial cells by UDP-galactose: implication for astrocytlineage diversity. Journal of Neuroscience Research, 52: 173-183. DOI: https://doi.org/10.1002/(SICI)1097-4547(19980415)52:2<173::AID-JNR5>3.3.CO;2-6

Nagelhus EA, Amiry-Moghaddam M, Bergersen LH, Bjaalie JG,Eriksson J, Gundersen V, Leergaard TB, Morth JP, Storm- Mathisen J, Torp R, Walhovd KB, Tønjum T. 2013. The glia doctrine: addressing the role of glial cells in healthy brain ageing. Mechanisms of Ageing and Development, 134: 449-459. DOI: https://doi.org/10.1016/j.mad.2013.10.001

Nedelcu D, Liu J, Xu Y, Jao C, Salic, A. 2013. Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling. Nature Chemical Biology, 9: 557-564. DOI: https://doi.org/10.1038/nchembio.1290

Nozawa YI, Lin C, Chuang P-T. 2013. Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction. Current Opinion in Genetics & Development, 23: 429-437. DOI: https://doi.org/10.1016/j.gde.2013.04.008

Okano-Uchida T, Himi T, Komiya Y, Ishizaki Y. 2004. Cerebellar granule cell precursors can differentiate into astroglial cells. Proceedings of the National Academy of Sciences of the United States of America, 101: 1211-1216. DOI: https://doi.org/10.1073/pnas.0307972100

Okuda H, Tatsumi K, Morita-Takemura S, Nakahara K, Nochioka K, Shinjo T, Terada Y, Wanaka A. 2015. Hedgehog Signalin Modulates the Release of Gliotransmitters from Cultured Cerebellar Astrocytes. Neurochemical Research [Internet]: 1-12. Accessed: 21 January 2016. Available on: <http://link.springer.com/article/10.1007%2Fs11064-015-1791-y>. DOI: https://doi.org/10.1007/s11064-015-1791-y

Palma V, Lim DA, Dahmane N, Sánchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A. 2005. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development, 132: 335-344. DOI: https://doi.org/10.1242/dev.01567

Petrova R, Garcia ADR, Joyner AL. 2013. Titration of GLI3 repressor activity by sonic hedgehog signaling is critical for maintaining multiple adult neural stem cell and astrocyte functions. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33: 17490-17505. DOI: https://doi.org/10.1523/JNEUROSCI.2042-13.2013

Pitter KL, Tamagno I, Feng X, Ghosal K, Amankulor N, Holland EC, Hambardzumyan D. 2014. The SHH/Gli pathway is reactivated in reactive glia and drives proliferation in response to neurodegeneration-induced lesions. Glia, 62: 1595-1607. DOI: https://doi.org/10.1002/glia.22702

Prat A, Biernacki K, Wosik K, Antel JP. 2001. Glial cell influence on the human blood-brain barrier. Glia, 36: 145-155. Ransom B, Behar T, Nedergaard M. 2003. New roles for astrocytes (stars at last). Trends in Neurosciences, 26: 520-522. DOI: https://doi.org/10.1002/glia.1104

Riobó NA, Lu K, Ai X, Haines GM, Emerson CP. 2006. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proceedings of the National Academy of Sciences of the United States of America, 103: 4505-4510. DOI: https://doi.org/10.1073/pnas.0504337103

Robbins DJ, Fei DL, Riobo NA. 2012. The Hedgehog signal transduction network. Science Signaling [Internet], 5: re6. Accessed: 20 September 2015. Available on: <http://stke.sciencemag.org/content/5/246/re6>. DOI: https://doi.org/10.1126/scisignal.2002906

Robel S, Sontheimer H. 2015. Glia as drivers of abnormal neuronal activity. Nature Neuroscience, 19: 28-33. DOI: https://doi.org/10.1038/nn.4184

Ruiz i Altaba A. 2011. Hedgehog signaling and the Gli code in stem cells, cancer, and metastases. Science Signaling [Internet]: 4, pt9. Accessed: 5 July 2015. Avalaible on: <http://stke.sciencemag.org/ content/4/200/pt9>. DOI: https://doi.org/10.1126/scisignal.2002540

Ruiz i Altaba A, Palma V, Dahmane N. 2002. Hedgehog-Gli signalling and the growth of the brain. Nature Reviews Neuroscience, 3: 24-33. DOI: https://doi.org/10.1038/nrn704

Schitine C, Nogaroli L, Costa MR, Hedin-Pereira C. 2015. Astrocyte heterogeneity in the brain: from development to disease. Frontiers in Cellular Neuroscience [Internet], 9: 76. Accessed: 25 November 2015. Available on: <http://journal.frontiersin.org/article/10.3389/fncel.2015.00076/abstract>. DOI: https://doi.org/10.3389/fncel.2015.00076

Shi Q, Li S, Li S, Jiang A, Chen Y, Jiang J. 2014. Hedgehog-inducedphosphorylation by CK1 sustains the activity of Ci/Gli activator. Proceedings of the National Academy of Sciences of the United States of America, 111: E5651-E5660. DOI: https://doi.org/10.1073/pnas.1416652111

Sims JR, Lee S-W, Topalkara K, Qiu J, Xu J, Zhou Z, Moskowitz MA. 2009. Sonic hedgehog regulates ischemia/hypoxia-induced neural progenitor proliferation. Stroke; a Journal of Cerebral Circulation, 40: 3618-3626. DOI: https://doi.org/10.1161/STROKEAHA.109.561951

Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa M, Bek S, Heinrich C, Tiedt S, Colak D, Dichgans M, Fischer IR, Plesnila N, Staufenbiel M, Haass C, Snapyan M, Saghatelyan A, Tsai LH, Fischer A, Grobe K, Dimou L, Götz M. 2013. Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. Cell Stem Cell, 12: 426-439. DOI: https://doi.org/10.1016/j.stem.2013.01.019

Ståhlberg A, Andersson D, Aurelius J, Faiz M, Pekna M, Kubista M, Pekny M. 2011. Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations. Nucleic Acids Research [Internet], 39, e24. Accessed: 20 January 2016. Available on: . DOI: https://doi.org/10.1093/nar/gkq1182

Stecca B, Ruiz I Altaba A. 2010. Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. Journal of Molecular Cell Biology, 2: 84-95. DOI: https://doi.org/10.1093/jmcb/mjp052

Tabata H. 2015. Diverse subtypes of astrocytes and their development during corticogenesis. Frontiers in Neuroscience, 9: 114. DOI: https://doi.org/10.3389/fnins.2015.00114

Tabernero A, Medina JM, Giaume C. 2006. Glucose metabolism and proliferation in glia: role of astrocytic gap junctions. Journal of Neurochemistry, 99: 1049-1061. DOI: https://doi.org/10.1111/j.1471-4159.2006.04088.x

Verkhratsky A, Parpura V, Pekna M, Pekny M, Sofroniew M. 2014. Glia in the pathogenesis of neurodegenerative diseases. Biochemichal Society Transactions, 42: 1291-1301. DOI: https://doi.org/10.1042/BST20140107

Rudolf Virchow. 1862. Gesammelte Abhandlungen zur wissenschaftlichen Medizin [Internet]. Sweite unveranderte ausgabe. Accessed: 5 June 2016. Available on: <https://ia600802.us.archive.org/3/ items/gesammelteabhand00virc/gesammelteabhand00virc.pdf>.

Wallace VA, Raff MC. 1999. A role for Sonic hedgehog in axon-to- astrocyte signalling in the rodent optic nerve. Development, 126: 2901-2909. DOI: https://doi.org/10.1242/dev.126.13.2901

Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, Kawanokuchi J, Mizuno T, Takeuchi H, Suzumura A. 2014. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PloS One [Internet], 9: e110024. Accessed: 5 December 2015. Available on: <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110024>. DOI: https://doi.org/10.1371/journal.pone.0110024

White R, Krämer-Albers E-M. 2014. Axon-glia interaction and membrane traffic in myelin formation. Frontiers in Cellular Neuroscience, 7: 284. DOI: https://doi.org/10.3389/fncel.2013.00284

Xia Y-P, Dai R-L, Li Y-N, Mao L, Xue Y-M, He Q-W, Huang M, Huang Y, Mei Y-W, Hu B. 2012. The protective effect of sonic hedgehog is mediated by the phosphoinositide [corrected] 3-kinase/AKT/Bcl-2 pathway in cultured rat astrocytes under oxidative stress. Neuroscience, 209: 1-11. DOI: https://doi.org/10.1016/j.neuroscience.2012.02.019

Yang C, Rahimpour S, Yu ACH, Lonser RR, Zhuang Z. 2013. Regulation and dysregulation of astrocyte activation and implications in tumor formation. Cellular and molecular life sciences [Internet]: 70, 4201-4211. Accessed: 21 January 2016. Available on: <http://link.springer.com/article/10.1007%2Fs00018-013-1274-8>. DOI: https://doi.org/10.1007/s00018-013-1274-8

Yang H, Feng G-D, Olivera C, Jiao X-Y, Vitale A, Gong J, You S-W. 2012. Sonic hedgehog released from scratch-injured astrocytes is a key signal necessary but not sufficient for the astrocyte de- differentiation. Stem Cell Research, 9: 156-166. DOI: https://doi.org/10.1016/j.scr.2012.06.002

Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA. 2012. Genomic analysis of reactive astrogliosis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32: 6391-6410. DOI: https://doi.org/10.1523/JNEUROSCI.6221-11.2012

Zuchero JB and Barres BA. 2015. Glia in mammalian development and disease. Development, 142: 3805-3809. DOI: https://doi.org/10.1242/dev.129304

Published

2017-09-22

How to Cite

Bermúdez-Muñoz, O. M. (2017). Sonic Hedgehog (SHH) pathway in the adult brain: key signaling for astrocyte reactivation and brain repair. Actualidades Biológicas, 38(105), 197–209. https://doi.org/10.17533/udea.acbi.v38n105a07

Issue

Section

Full articles