The effect of salinity on the bioaccumulation capacity of lead on green alga Rhizoclonium riparium (Roth) harvey (Chlorophyceae, Cladophorales)

Authors

  • Natalia Ospina-Álvarez Santiago de Cali University
  • Enrique J. Peña University of Valle
  • Ricardo Benítez University of Cauca

DOI:

https://doi.org/10.17533/udea.acbi.329399

Keywords:

accumulation, lead, salinity, seaweed, bioassays

Abstract

Algal bioassays have been used as a practical tool for environmental control of pollution by toxic substances, mainly due to their feasibility in responding to a variety of environmental situations. This study evaluated the capacity of lead (Pb) accumulation by the green alga Rhizoclonium riparium under a set of laboratory conditions. Algal thalli were exposed to lead concentrations (0.1, 1.0, 10, and 15 μg/ml), during a period ranged from 2, 12,24, and 144 hours. The capacity of metal absorption was also examined under a set of salinity conditions (0, 5,15, 30, and 60‰). Metal concentrations were determined by using an atomic absorption spectrophotometer. The highest metal accumulation rates were found at 15‰ of salinity and between 1 and 1.0 μg/ml of lead concentration. Bioaccumulation of lead in algal tissues displayed a linear pattern proportionally with exposure time. These results indicated that accumulation capacity of the green alga is directly influenced by salinity and is a function of metal concentration, and exposure time. Finally, the study suggested that this species could act as indicator of lead concentrations in coastal waters, based on the algal kinetics of lead biosorption.

|Abstract
= 764 veces | PDF (ESPAÑOL (ESPAÑA))
= 621 veces|

Downloads

Download data is not yet available.

References

Clesceri L, Greenberg AE, Eaton AD (eds.). 1995. Standardmethods for the examination of water and wastewater. 19th Ed. American Public Healt Association-APHA. Washington, D. C., E. U. A.

Baker AJ, Walker PL. 2000. Ecophysiology of metaluptake by tolerant plants. Pp. 155-177. En: Shaw JA(ed.). Heavy metal tolerance in plants: Evolutionaspects. CRC Press, Inc. Boca Ratón (Florida), E. U.A.

Bryan GW. 1969. The absorption of zinc and other metalsby the brown seaweed, Laminaria digitata. Journalof Marine Biology Association of United Kingdom,49:225-243.

Cantera JR. 1991. Etude structurale des mangroves et despeuplements littoraux des deux baies du pacifiqueColombien (Málaga et Buenaventura). Rapport avecles conditions du milieu et les perturbationsanthropiques. These d’Etat Sciences. UniversitédÁix-Marseille II, Marseille, France.

Cantera JR. 1992. Oceanografía. Tomo I, pp. 15-22. En:Leyva P (ed.). Colombia Pacífico. ProyectoBiopacifico INDERENA - DNP -GEF- PNUD-FEN.Colombia.

Cheeseman JM. 1988. Mechanisms of salinity tolerance inplants. Plant Physiology, 87:547-550.

Chong AMY, Wong YS, Tam NFY. 2000. Performance of di-fferent microalgal species in removing nickel and zincfrom industrial watewater. Chemosphere, 41:251-257.

Chopin T. 2001. Protocol for monitoring of seaweeds. Areport by the Marine Biodiversity MonitoringCommittee (Atlantic Maritime Ecological ScienceCooperative, Huntsman Marine Science Centre) tothe ecological monitoring and assessment Networkof Environment Canada. Documento PDF en la WEBen la siguiente dirección electrónica: <http://www.eman-rese.ca/eman/ecotools/protocols/marine/seaweeds/intro.html>

Costa M, Liss PS. 1999. Photoreduction of mercury in seawater and its possible implications for Hg, air-seafluxes. Review Marine Chemestry, 68:87-95.

Guillard RRL. 1975. Culture of phytoplankton for feedingmarine invertebrates. Pp. 26-60. En: Smith WL,Chanley MH (eds.). Culture of Marine InvertebrateAnimals. Plenum Press. Nueva York, E. U. A.

Hoek CV, Mann DG, Jahns HM. 1995. Algae: anintroduction to phycology. Cambridge UniversityPress. Nueva York, E. U. A.

Larcher W. 1995. Physiological plant ecology. TerceraEd. Springer-Verlag. Nueva York. E. U. A.

Levine HG. 1984. The use of seaweeds for monitoring coastalwaters. Pp. 189-210. En: Shubret EL (ed.). Algae asecological indicators. Academic Press Inc. Londres,Inglaterrra.

Lobban CS, Harrison PJ. 1994. Seaweed ecology andphysiology. Cambridge University Press. Nueva York,E. U. A.

Morris AW, Bale AJ. 1975. The accumulation of cadmium,copper, manganese, and zinc by Fucus vesiculosusin the British Channel. Estuarine Coastal MarineScience, 3:153-161.

Munda IM, Hudnik V. 1988. The effects of Zn, Mn, andCo accumulation on growth and chemicalcomposition of Fucus vesiculosus L. under differenttemperature and salinity conditions. MarineEcology, 9:213-225.

Peña EJ. 1998. Physiological ecology of mangroveassociated macroalgae in a tropical estuary. Tesis dedoctorado. Universidad de Carolina del Sur. E. U. A.

Peña EJ, Zingmark R, Nietch C. 1999. Comparativephotosynthesis of two species of epithic macroalgaeon mangrove roots during submersion and emersion.Journal of Phycology, 35:1206-1214.

PNUMA. 1999. Diagnóstico regional sobre las actividadesy fuentes terrestres de contaminación que afectanlos ambientes marino, costero y dulceacuícolaasociados en el Pacífico sudeste. PNUMA/PAMOficina de Coordinación y CPPS. Montevideo,Uruguay.

Powell RL. 1997. The use of vascular plants as fieldbiomonitors. Pp. 121-132. En: Wang W, GorsuchJW, Hughes JS (eds.). Plants for environmentalstudies. CRC Press LLC,Lewis Publishers. NuevaYork, E. U. A.

Reed RH, Gadd GM. 2000. Metal tolerance in eukaryoticand prokaryotic algae. Pp. 208-224. En: Shaw JA(ed.). Heavy metal tolerance in plants:evolutionary aspects. CRC Press. Boca Raton(Florida), E. U. A.

Sánchez-Rodríguez I, Huerta-Díaz MA, Choumiline E,Holguín-Quiñones O, Zertuche-González JA. 2001.Elemental concentrations in different species ofseaweeds from Loreto Bay, Baja California Sur,Mexico: implications for the geochemical control ofmetals in algal tissue. Environmental Pollution,114:145-160.

Schnetter R, Bula G. 1982. Marine algen der Pazifikküstevon Kolombien. Chlorophyceae, Phaeophyceae,Rhodophyceae. Bibliotheca Phycologica, 60:1-287.

Schiewer S, Wong MH. 2000. Ionic strength effects inbiosoportion of metals by marine algae. ReviewChemosphere, 41:271-282.

Seeliger U, Edwards P. 1977. Correlation coefficients andconcentration factors of copper and lead in seawaterand benthic algae. Marine Pollution Bulletin,8(1):16-19.

Vera IS, Wilkinson J. 2002. Physicochemical aspects oflead bioaccumulation by Chlorella vulgaris.Environmental Science and Technology, 36:969-975.

Wang W, Lewis MA. 1997. Metal accumulation by aquaticmacrophytes. Pp. 367-416. En: Wang W, GorsuchJW, Hughes JS (eds.). Plants for environmentalstudies. CRC Press LLC.,Lewis Publishers. NuevaYork. E. U. A.

West JA, Calumpong HP. 1988. Mixed-phase reproductionof Bostrychia (Ceramiales; Rhodophyta) in culture.I. Bostrychia tenella (Lamouroux). Japanese Journalof Phycology, 36:292-310.

Wilcox B, Guinther E, Duin K, Maybaum H. 1998. Manualfor watershed health and water quality. Geo InSightInternational Inc, Institute for SustainableDevelopment and Marine Corps Base Hawaii MCBHEnvironmental Affairs Division. Honolulu, E. U. A.

Wilson JG. 1994. The role of bioindicators in estuarinemanagement. Estuarines, 17(1A):94-101.

Published

2017-11-22

How to Cite

Ospina-Álvarez, N., Peña, E. J., & Benítez, R. (2017). The effect of salinity on the bioaccumulation capacity of lead on green alga Rhizoclonium riparium (Roth) harvey (Chlorophyceae, Cladophorales). Actualidades Biológicas, 28(84), 10. https://doi.org/10.17533/udea.acbi.329399

Issue

Section

Full articles