Atividade larvicida de extratos vegetais da família Asteraceae e modelagem matemática para uso no controle de populações de Aedes aegypti
DOI:
https://doi.org/10.17533/udea.acbi.v40n108a01Palavras-chave:
Aedes aegypti, bioensayos, extractos vegetales, fitoquímica, larvicida, modelo matemáticoResumo
Dengue, chikungunya e Zika, todos transmitidos pelo Aedes aegypti, são doenças que afetam amplamente a população mundial. A avaliação de extratos vegetais permite o estabelecimento de produtos eficientes para o controle desse mosquito. Este trabalho avaliou a atividade larvicida em A. aegypti de 23 espécies da família Asteraceae e sua composição fitoquímica preliminar. O material vegetal utilizado foi coletado no Departamento de Quindío, Colômbia. Com esse material, foram preparados os extratos vegetais etanólicos utilizados na caracterização fitoquímica e nos bioensaios. Para cada extrato, um bioensaio dose-resposta foi realizado com larvas do município da Armênia (Quindío, Colômbia), seguindo o protocolo da OMS. Estes indicam que, após 48 h, os extratos de Jaegeria hirta (694,8% ± 149,9), Austroeupatorium inulaefolium (753,3% ± 198,8) e Heliopsis oppsitifolia (764,4% ± 170,0) requerem uma concentração menor para matar 95% das larvas. Adicionalmente, foi construído um modelo matemático que descreve o comportamento das populações, a fim de avaliar diferentes estratégias de controle com os extratos; As simulações obtidas a partir da solução numérica do sistema permitem concluir que a aplicação de extratos dessas plantas constitui uma ferramenta viável para o controle de A. aegypti. Por sua vez, o progresso fitoquímico preliminar das 23 espécies mostra a presença de taninos, quinonas, flavonóides, esteróis, cumarinas e alcalóides. Conclui-se que J. hirta, A. inulaefoliu e H. oppsitifolia merecem ser estudados em profundidade, dado seu potencial larvicida para o controle de A. aegypti.
Downloads
Referências
Abdel-Salam E, Canyon D, Younes M, Abdel-Wahab H, Abdel-Hamid M. 2005. A review of botanical phytochemicals with mosquitocidal potential. Environment International, 31(8): 1149-1166. DOI:10.1016/j.envint.2005.03.003
Aguiar M, Stollen N, Halstead S. 2016. The risks behind Dengvaxia recommendation. The Lancet Infectious Diseases, 16(8): 882. DOI: 10.1016/S1473-3099(16)30168-2
Aguirre-Obando O, Dalla-Bona A, Duque-Luna J, Navarro-Silva M. 2015. Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Colombia. Zoologia (Curitiba), 32(1): 14-22. http://dx.doi.org/10.1590/S1984-46702015000100003
Amariles-Barrera S, García-Pajón C, Parra-Henao G. 2013. Actividad insecticida de extractos vegetales sobre larvas de Aedes aegypti, Diptera: Culicidae. Revista CES Medicina, 27(2): 193-203.
http://revistas.ces.edu.co/index.php/medicina/article/view/2680/2038
Amrutha P, Priya B, Lakshmanasenthil S, Jenifer A, Pillai L, Suja G, Vinothkumar T. 2013. Pyrethrin from Tanacetum cineriifoliun as repellent against mosquitoes. International Current Pharmaceutical Journal, 2(10): 170-176. http://dx.doi.org/10.3329/icpj.v2i10.16411
Anogwih JA, Makanjuola WA, Chukwu LO. 2015. Potential for integrated control of Culex quinquefasciatus (Diptera: Culicidae) using larvicides and guppies. Biological Control, 81:31-36. http://dx.doi.org/10.1016/j.biocontrol.2014.11.001
Asiry KA, Hassan SSM, Ibrahim NA, Al-Khuraiji IA, Kehial MA, Al-Anazi NA, Al- nasser AS, Al-Shehri AZ. 2017. Larvicidal efficacy of ethanolic leaf extracts of four selected local plants from hail region, northern saudi arabia, against the dengue fever vector, Aedes aegypti (l.) under laboratory conditions. International Journal of Mosquito Research, 4(3): 81-87. http://www.dipterajournal.com/pdf/2017/vol4issue3/PartB/4-3-1-519.pdf
Bar-Zeev M. 1958. The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti (L.). Bulletin of Entomological Research, 49(1): 157-163. https://doi.org/10.1017/S0007485300053499
Bello FJ, Rozo Á, Zapata C. 2008. Evaluación del efecto tóxico de extractos de Eupatorium microphyllum LF (Asteraceae) sobre larvas de Aedes aegypti (Diptera: Culicidae) en condiciones de laboratorio. Revista Ciencias de la Salud, 6(2): 64-73. https://revistas.urosario.edu.co/index.php/revsalud/article/view/483
Bessada S, Barreira J, Oliveira B. 2015. Asteraceae species with most prominent bioactivity and their potential applications: a review. Industrial Crops and Products, 76: 604-615. DOI: 10.1016/j.indcrop.2015.07.073
Bilbao M. 1997. Análisis fitoquímico preliminar. Armenia (Colombia): Universidad del Quindío.
Bisset JA, Esteban R, Rodríguez-Coto MM, Ricardo-Leyva Y, Hurtado-Núñez D, Fuentes I. 2014. Evaluación de la resistencia a insecticidas en Aedes aegypti (Diptera: Culicidae) de Argentina. Revista Cubana de Medicina Tropical, 66(3): 360-369.
Burden R, Faires J. 2005. Análisis numérico. Séptima edición. México: Thomson Learning.
Coria C, Almiron W, Valladares G, Carpinella C, Ludueña F, Defago M, Palacios S. 2008. Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae). Bioresource Technology, 99(8): 3066-3070. DOI:10.1016/j.biortech.2007.06.012
Conde M, Orjuela L, Castellanos C, Herrera-Varela M, Licastro S, Quiñones M. 2015. Evaluación de la sensibilidad a insecticidas en poblaciones de Aedes aegypti (Diptera: Culicidae) del departamento de Caldas, Colombia, en 2007 y 2011. Biomédica, 35(1): 43-52. https://doi.org/10.7705/biomedica.v35i1.2367
Díaz-Castillo F, Morelos-Cardona SM, Carrascal-Medina M, Pájaro-González Y, Gómez-Estrada H. 2012. Actividad larvicida de extractos etanólicos de Tabernaemontana cymosa y Trichilia hirta sobre larvas de estadio III y IV de Aedes aegypti (Diptera: Culicidae). Revista Cubana de Plantas Medicinales, 17(3): 256-267.
Duarte I, Chaib de Mares M, Luna D, Aguirre-Obando O, Méndez R. 2015. Estudio demográfico de Emilia sonchifolia (Asteraceae) en una finca cafetera de Armenia, Quindío, Colombia. Acta Biológica Colombiana, 20(2): 101-110. https://doi.org/10.15446/abc.v20n2.41790
Espinosa-Ruiz R, Herrera-Isla L, Bravo-Sánchez LR, Hernández-Aro M, Torres-García S, Ramos-González Y, Espinosa-Mill M. 2012. Efecto sinérgico de taninos y flavonoides presentes en Terminalia catappa L. sobre el crecimiento micelial de Rhizoctonia solani Kühn y Sclerotium rolfsii Sacc. Fitosanidad, 16(1): 27-32. http://www.fitosanidad.cu/index.php/fitosanidad/article/view/208/229
Evans BR, Gloria-Soria A, Hou L, McBride C, Bonizzoni M, Zhao H, Powell JR. 2015. A Multipurpose High Throughput SNP Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti. Genes Genomes Genetics, G3, 5(5): 711-718. DOI:10.1534/g3.114.016196
Finney D. 1971. Probit analysis. 3rd edition. Cambridge (England): University Press. Fonseca-González I, Quiñones ML, Lenhart A, Brogdon WG. 2011. Insecticide resistance status of Aedes aegypti (L.) from Colombia. Pest Management Science, 67:430-437. https://doi.org/10.1002/ps.2081
Garcıa-Chávez A, Ramírez E, Molina-Torres J. 2004. El género Heliopsis (Heliantheae; Asteraceae) en México y las alcamidas presentes en sus raíces. Acta Botánica Mexicana, 69:115-131. https://doi.org/10.21829/abm69.2004.983
Govindarajan M. 2016. Mosquito Larvicidal Potential of Medicinal Plants. In Veer V, Gopalakrishnan R editores. Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization. New Delhi: Springer India. p. 25-61.
Halstead S, Aguiar M. 2016. Dengue vaccines: Are they safe for travelers? Travel Medicine and Infectious Disease, 14(4):378-383. DOI: 10.1016/j.tmaid.2016.06.005
Hernández-Morales A, Arvizu-Gómez JL, Carranza-Álvarez C, Gómez-Luna BE, Alvarado-Sánchez B, Ramírez-Chávez E, Molina-Torres J. 2015. Larvicidal activity of affinin and its derived amides from Heliopsis longipes A. Gray Blake against Anopheles albimanus and Aedes aegypti. Journal of Asia-Pacific Entomology, 18(2): 227-231.
https://doi.org/10.1016/j.aspen.2014.09.004
Higgs S, Vanlandingham DL. 2015. Chikungunya: here today, where tomorrow? International Health, 7(1):1-3. https://doi.org/10.1093/inthealth/ihu092
Jørgensen PM, Ulloa-Ulloa C, León B, León-Yánez S, Beck SG, Nee M, Zarucchi JL, Celis M, Bernal R, Gradstein R. 2011. Regional patterns of vascular plant diversity and endemism. En: Herzog SK, Martínez R, Jørgensen PM editores. Climate change and biodiversity in the tropical Andes. São José dos Campos (Brasil): Inter-American Institute of Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE). p. 192-203.
Kantor I. 2016. Dengue, Zika and Chikungunya. Medicina, 76(2): 93-97. http://www.medicinabuenosaires.com/PMID/26942903.pdf
Kawada H, Oo SZM, Thaung S, Kawashima E, Maung YNM, Thu HM, Thant KZ, Minakawa N. 2014. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar. PLOS Neglected Tropical Diseases, 8(7): e3032. DOI: 10.1371/journal.pntd.0003032
Kishore N, Mishra BB, Tiwari VK, Tripathi V, Lall N. 2014. Natural products as leads to potential mosquitocides. Phytochemistry Reviews, 13(3): 587-627. https://doi.org/10.1007/s11101-013-9316-2
Li C, Lim T, Han L, Fang R. 1985. Rainfall, abundance of Aedes aegypti and dengue infection in Selengar, Malaysia, Southeast Asian. Journal of Tropical Medicine and Public Health, 16(4): 560-568.
Linss JG, Brito L, Garcia G, Araki A, Bruno R, Lima JB, Valle D, Martins A. 2014. Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations. Parasites and Vectors, 7: 25-35. doi: 10.1186/1756-3305-7-25
Maciel-de-Freitas R, Aguiar R, Bruno RV, Guimarães MC, Lourenço-de-Oliveira R, Sorgine MH, Struchiner CJ, Valle D, O'Neill SL, Moreira LA. 2012. Why do we need alternative tools to control mosquito-borne diseases in Latin America? Memórias do Instituto Oswaldo Cruz, 107(6): 828-829. http://dx.doi.org/10.1590/S0074-02762012000600021
Macêdo ME, Consoli RA, Grandi TS, Anjos AM, Oliveira AB, Mendes NM, Queiróz RO, Zani CL. 1997. Screening of Asteraceae (Compositae) plant extracts for larvicidal activity against Aedes fluviatilis (Diptera: Culicidae), Memórias do Instituto Oswaldo Cruz, 92(4): 565-570. http://dx.doi.org/10.1590/S007402761997000400024
Manrique-Saide P, Delfín-González H, Parra-Tabla V, Ibáñez-Bernal S. 1998. Desarrollo, mortalidad y sobrevivencia de las etapas inmaduras de Aedes aegypti (Diptera: Culicidae) en neumático. Revista Biomédica, 9:84-91. http://www.revbiomed.uady.mx/pdf/rb98922.pdf
Matsuda K, Kikuta Y, Haba A, Nakayama K, Katsuda Y, Hatanaka A, Komai K. 2005. Biosynthesis of pyrethrin I in seedlings of Chrysanthemum cinerariaefolium. Phytochemistry, 66(13): 1529-1535. DOI:10.1016/j.phytochem.2005.05.005
Mathworks T. 2009. The Mathworks, Inc; [fecha de acceso enero 24, 2018].http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html
MinSalud, INS, OPS. 2011. Gestión para la vigilancia entomológica y control de la transmisión de Dengue. Bogotá (Colombia): Ministerio de Salud y Protección Social.http://www.paho.org/col/index.php?option=com_docman&view=download&category_slug=publicaciones-ops-oms-colombia&alias=1215-gestion-para-la-vigilancia-entomologica-y-control-de-la-transmision-de-dengue&Itemid=688
Nikon F, Habib MR, Saud ZA, Karim MR. 2011. Tagetes erecta Linn. and its mosquitocidal potency against Culex quinquefasciatus. Asian Pacific Journal of Tropical Biomedicine, 1(3): 186-188. DOI:10.1016/S2221-1691(11)60024-5
Nkya TE, Akhouayri I, Kisinza W, David J-P. 2013. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochemistry and Molecular Biology, 43(4): 407-416. https://doi.org/10.1016/j.ibmb.2012.10.006
Osorio C, Rincón C, Londoño N. 2017. Informe primer semestre de los eventos de interés en salud pública departamento del Quindío – 2016. https://quindio.gov.co/home/docs/items/item_196/INFORME_QUINDIO_PRIMER_SEMESTRE_FINAL.pdf
Pani M, Nahak G, Sahu RK. 2015. Review on larvicidal activity of medicinal plants for malaria vector control. International Journal of Current Pharmaceutical Review and Research, 6(2): 94-114.
Parra G, García C, Cotes J. 2007. Actividad insecticida de extractos vegetales sobre Aedes aegypti (Diptera: Culicidae) vector del dengue en Colombia. Revista CES Medicina, 21(1): 47-54.
http://revistas.ces.edu.co/index.php/medicina/article/view/34/26
Pichersky E, Lewinsohn E. 2011. Convergent evolution in plant specialized metabolism. Annual Review of Plant Biology, 62:549-566. https://doi.org/10.1146/annurev-arplant-042110-103814
Raymond M. 1993. PROBIT software. CNRS UMII, Licence L93019 Avenix, France. Rebêlo JM, Costa JM, Silva FS, Pereira YN, Silva JM. 1999. Distribution of Aedes aegypti and dengue in the State of Maranhão, Brazil. Cadernos de Saúde Pública, 15(3): 477-486. http://dx.doi.org/10.1590/S0102-311X1999000300004.
Santacoloma L, Chaves B, Brochero H. 2012. Estado de la susceptibilidad de poblaciones naturales del vector del dengue a insecticidas en trece localidades de Colombia. Biomédica, 32(3): 333-343. https://doi.org/10.7705/biomedica.v32i3.680
Sarwar M. 2015. The Killer Chemicals for Control of Agriculture Insect Pests: The Botanical Insecticides. International Journal of Chemical and Biomolecular Science, 1(3): 123-128. http://files.aiscience.org/journal/article/html/70420032.html
Sharma P, Mohan L, Srivastava C. 2006. Phytoextract-induced developmental deformities in malaria vector. Bioresource Technology, 97(14): 1599-1604. DOI:10.1016/j.biortech.2005.07.024
Silva A, Andrade L. 2013. Utilização de espécies de Asteraceae por comunidades rurais do Nordeste do Brasil: relatos em Camocim de São Félix, Pernambuco. Biotemas, 26(2): 93-104. https://doi.org/10.5007/2175-7925.2013v26n2p93
Soares-da-Silva J, Pinheiro VCS, Litaiff-Abreu E, Polanczyk RA, Tadei WP. 2015. Isolation of Bacillus thuringiensis from the state of Amazonas, in Brazil, and screening against Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia, 59(1): 01-06. http://dx.doi.org/10.1016/j.rbe.2015.02.001
Sukhthankar JH, Kumar H, Godinho M, Kumar A. 2014. Larvicidal activity of methanolic leaf extracts of plant, Chromolaena odorata L.(Asteraceae) against vector mosquitoes. International Journal of Mosquito Research, 1(3): 33-38. http://www.dipterajournal.com/vol1issue3/august2014/16.1.pdf
Tehri K, Singh N. 2015. The role of botanicals as green pesticides in integrated mosquito management–A review. International Journal of Mosquito Research, 2(1): 18-23. http://www.dipterajournal.com/pdf/2015/vol2issue1/PartA/1-5-3-
Tennyson S, Ravindran J, Eapen A, William J. 2015. Ovicidal activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pacific Journal of Tropical Disease, 5(3): 199-203. https://doi.org/10.1016/S2222- 1808(14)60653-8
Tran TT, Olsen A, Viennet E, Sleigh A. 2015. Social sustainability of Mesocyclops biological control for dengue in South Vietnam. Acta Tropica, 141(Part A):54- 59. https://doi.org/10.1016/j.actatropica.2014.10.006
Vélez MC, Agudelo CA, Macial D. 1998. Flora Andina. Volumen 1. Flora arvense de la región cafetera centro-andina de Colombia. Armenia (Colombia). Universidad del Quindío.
Villar L, Dayan G, Arredondo-García J, Rivera D, Cunha R, Deseda C, Carrasquilla G. 2015. Efficacy of a tetravalent dengue vaccine in children in Latin America. New England Journal of Medicine, 372(2): 113-123. DOI: 10.1056/NEJMoa1411037
Vivekanandhan P, Senthil-Nathan S, Shivakumar M. 2018. Larvicidal, pupicidal and adult smoke toxic effects of Acanthospermum hispidum (DC) leaf crude extracts against mosquito vectors. Physiological and Molecular Plant Pathology, 101: 156-162. http://dx.doi.org/10.1016/j.pmpp.2017.05.005
Vontas J, Kioulos E, Pavlidi N, Morou E, Della Torre A, Ranson H. 2012. Insecticide
resistance in the major dengue vectors Aedes albopictus and Aedes aegypti.
Pesticide Biochemistry and Physiology, 104(2): 126-131.
DOI:10.1016/j.pestbp.2012.05.008
WHO. 1981. Instructions for determining susceptibility or resistance of mosquito larvae
to insecticides. Geneva: World Health Organization. WHO/VBC/81.807.
WHO. 1998. Report of the WHO Informal Consultation. Test procedures for insecticide
resistance monitoring in malaria vectors, bioefficacy and persistence of
insecticides on treated surfaces. Geneva: World Health Organization. Parasitic Diseases and Vector Control (PVC)/Communicable Disease Control, Prevention
and Eradication (CPE), 43.
WHO. 2013. Sustaining the drive to overcome the global impact of neglected tropical
diseases. Second WHO report on neglected tropical diseases. Geneva: World
Health Organization; [Fecha de acceso marzo 20, 2015].
http://apps.who.int/iris/bitstream/10665/77950/1/9789241564540_eng.pdf.
WHO. 2014. Dengue and severe dengue. Fact sheet No.117. Geneva: World Health
Organization; [Fecha de acceso marzo 20, 2015].
http://www.who.int/mediacentre/factsheets/fs117/en/
Yadav R, Tikar S, Sharma A, Tyagi V, Sukumaran D, Jain A, Veer V. 2015. Screening of
some weeds for larvicidal activity against Aedes albopictus, a vector of dengue
and chikungunya. Journal of Vector Borne Diseases, 52(1): 88-94.
http://www.jvbd.org/temp/JVectorBorneDis52188-5404541_150045.pdf
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2018 Actualidades Biológicas
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Os autores autorizam exclusivamente a revista Actualidades Biológicas a editar e publicar o manuscrito submetido, desde que sua publicação seja recomendada e aceita, sem que isso represente qualquer custo para a Revista ou para a Universidade de Antioquia. Todas as ideias e opiniões contidas nos artigos são de responsabilidade exclusiva de Os autores. O conteúdo total das edições ou suplementos da revista é protegido pela Licença Internacional Creative Commons Atribuição-NãoComercial-Compartilhamento pela mesma Licença, portanto não podem ser utilizados para fins comerciais, mas sim para fins educacionais. Porém, cite a revista Actualidades Biológicas como fonte e envie uma cópia da publicação em que o conteúdo foi reproduzido.