Influence of vegetation cover on the functional diversity of macroinvertebrates associated with leaf litter in a stream of the tropical dry forest

Autores

  • Jose Alejandro Cuellar Cardozo Universidad La Salle
  • Hakan Bozdoğan Kırşehir Ahi Evran University

DOI:

https://doi.org/10.17533/udea.acbi/v46n121a06

Palavras-chave:

conservation, Colombia, Functional richness, Huila, QBR index, tree cover

Resumo

Vegetation is a fundamental element for the maintenance of macroinvertebrates functional diversity and, therefore, essential to aquatic trophic net preservation, being particularly relevant in threatened ecosystems such as tropical dry forests. Our aim is to determine the relationship between vegetal cover conservation and macroinvertebrates functional diversity associated with litter, in a stream from a tropical dry forest. In La Avería stream (Huila, Colombia), we sampled sites with different vegetation cover, estimated their physicochemical variables, and calculated leaf litter inputs (vertical, side, and drift) for each station for a whole year. Subsequently, we recorded the macroinvertebrates associated with litter from common vegetal species using leaf traps. We performed a PERMANOVA, added to multiple linear regression models and a redundancy analysis to correlate our environmental variables with changes in functional diversity. We observed changes in the functional parameters related to sampling zones and time. On one hand, functional richness and distance, are associated with dry seasons when resource availability and environmental conditions are stabilized. On the other hand, the functional evenness value diminishes in areas with higher pH due to the loss of individuals. We found evidence of a relationship between physicochemical variables and functional diversity. pH and precipitation changes were directly associated with changes in litter supply and therefore define the dimensionality of the functional traits in the ecosystem. Our work emphasizes the idea that the macroinvertebrate diversity carries great potential as a tool for decision-making in the preservation and environmental management of aquatic and riparian systems.

|Resumo
= 471 veces | PDF (ENGLISH)
= 140 veces| | EPUB (ENGLISH)
= 4 veces| | GRAPHICAL ABSTRACT (ENGLISH)
= 8 veces|

Downloads

Biografia do Autor

Jose Alejandro Cuellar Cardozo, Universidad La Salle

Bioprospección y Biodiversidad Colombiana, Universidad La Salle, Bogotá, Colombia.

Hakan Bozdoğan, Kırşehir Ahi Evran University

Kırşehir Ahi Evran University, Vocational School of Technical Sciences, Department of Plant and Animal Production, Kırşehir, Turkey.

Referências

Acosta, R., Ríos, B., Rieradevall, M., & Prat, N. (2009). Propuesta de un protocolo de evaluación de la calidad ecológica de ríos andinos (CERA) y su aplicación a dos cuencas en Ecuador y Perú. Limnetica, 28(1), 35–64.

Aguiar, A. C. F., Neres-Lima, V., & Moulton, T. P. (2018). Relationships of shredders, leaf processing, and organic matter along a canopy cover gradient in tropical streams. Journal of Limnology, 77(1), 109–120. https://doi.org/10.4081/jlimnol.2017.1684

Andrade, J. R. De, Gomes, C., Lopes, R., Ayron, B., Aguiar, D. S., Kelly, V., & Araujo, R. De. (2022). Short timescale regeneration in a tropical dry forest in Brazil. Research, Society and Development, 11(5), 1–14.

Bae, M. J., & Park, Y. S. (2016). Responses of the functional diversity of benthic macroinvertebrates to floods and droughts in small streams with different flow permanence. Inland Waters, 6(3), 461–475. https://doi.org/10.1080/IW-6.3.891

Baumgärtner, D., & Rothhaupt, K. O. (2003). Predictive Length-Dry Mass Regressions for Freshwater Invertebrates in a Pre-Alpine Lake Littoral. International Review of Hydrobiology, 88(5), 453–463. https://doi.org/10.1002/iroh.200310632

Belmar, O., Bruno, D., Guareschi, S., Mellado-Díaz, A., Millán, A., & Velasco, J. (2019). Functional responses of aquatic macroinvertebrates to flow regulation are shaped by natural flow intermittence in Mediterranean streams. Freshwater Biology, 64(5), 1064–1077. https://doi.org/10.1111/fwb.13289

Benke, A. C., Huryn, A. D., Smock, L. a, & Wallace, J. B. (1999). Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society, 18(3), 308–343. https://doi.org/10.2307/1468447

Berger, E., Haase, P., Schäfer, R. B., & Sundermann, A. (2018). Towards stressor-specific macroinvertebrate indices: Which traits and taxonomic groups are associated with vulnerable and tolerant taxa? Science of the Total Environment, 619–620(April), 144–154. https://doi.org/10.1016/j.scitotenv.2017.11.022

Boersma, K. S., Dee, L. E., Miller, S. J., Bogan, M. T., Lytle, D. A., & Gitelman, A. I. (2016). Linking multidimensional functional diversity to quantitative methods: A graphical hypothesis-evaluation framework. Ecology, 97(3), 583–593. https://doi.org/10.1890/15-0688

Bojsen, B. H., & Jacobsen, D. (2003). Effects of deforestation on macroinvertebrate diversity and assemblage structure in Ecuadorian Amazon streams. Archiv Fur Hydrobiologie, 158(3), 317–342. https://doi.org/10.1127/0003-9136/2003/0158-0317

Boyero, L., Barmuta, L. A., Ratnarajah, L., Schmidt, K., & Pearson, R. G. (2012). Effects of exotic riparian vegetation on leaf breakdown by shredders: a tropical–temperate comparison. Freshwater Science, 31(2), 296–303. https://doi.org/10.1899/11-103.1

Boyero, L., Pearson, R. G., Gessner, M. O., Barmuta, L. A., Ferreira, V., Graça, M. A. S., Dudgeon, D., Boulton, A. J., Callisto, M., Chauvet, E., Helson, J. E., Bruder, A., Albariño, R. J., Yule, C. M., Arunachalam, M., Davies, J. N., Figueroa, R., Flecker, A. S., Ramírez, A., … West, D. C. (2011). A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters, 14(3), 289–294. https://doi.org/10.1111/j.1461-0248.2010.01578.x

Burgherr, P., & Meyer, E. (1997). Regression analysis of liner body dimensions vs dry mass in stream macroinvertebrates. Archiv Für Hydrobiologie, 39(1), 101–112.

Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48(5), 1079–1087. https://doi.org/10.1111/j.1365-2664.2011.02048.x

Carroll, G. D., & Jackson, C. R. (2008). Observed relationships between urbanization and riparian cover, shredder abundance, and stream leaf litter standing crops. Fundamental and Applied Limnology, 173(3), 213–225. https://doi.org/10.1127/1863-9135/2008/0173-0213

Carvalho, E., & Uieda, V. (2010). The input of litter in deforested and forested areas of a tropical headstream. Brazilian Journal of Biology, 70(2), 283–288. https://doi.org/10.1590/s1519-69842010005000015

Casotti, C. G., Kiffer, W. P., Costa, L. C., Rangel, J. V., Casagrande, L. C., & Moretti, M. S. (2015). Assessing the importance of riparian zone conservation for leaf decomposition in streams. Natureza & Conservacao, 13(2), 178–182. https://doi.org/10.1016/j.ncon.2015.11.011

Chará-Serna, A. M., Chará, J. D., Zúñiga, M. del C., Pearson, R. G., & Boyero, L. (2012). Diets of leaf litter-associated invertebrates in three tropical streams. Annales de Limnologie - International Journal of Limnology, 48(2), 139–144. https://doi.org/10.1051/limn/2012013

Chevenet, F., Doledec, S., & Chessel, D. (1994). A fuzzy coding approach for the analysis of long‐term ecological data. Freshwater Biology, 31(3), 295–309. https://doi.org/10.1111/j.1365-2427.1994.tb01742.x

Classen‐Rodríguez, L., Gutiérrez‐Fonseca, P. E., & Ramírez, A. (2019). Leaf litter decomposition and macroinvertebrate assemblages along an urban stream gradient in Puerto Rico. Biotropica, May, btp.12685. https://doi.org/10.1111/btp.12685

Colzani, E., Siqueira, T., Suriano, M. T., & Roque, F. O. (2013). Responses of aquatic insect functional diversity to landscape changes in Atlantic forest. Biotropica, 45(3), 343–350. https://doi.org/10.1111/btp.12022

Cooper, S. D., Lake, P. S., Sabater, S., Melack, J. M., & Sabo, J. L. (2013). The effects of land use changes on streams and rivers in Mediterranean climates. Hydrobiologia, 719(1), 383–425. https://doi.org/10.1007/s10750-012-1333-4

Cordova-Tapia, F., & Zambrano, L. (2015). La diversidad funcional en la ecología de comunidades. Ecosistemas, 24(3), 78–87.

Cory, R. M., Ward, C. P., Crump, B. C., & Kling, G. W. (2014). Sunlight controls the water column processing of carbon in arctic fresh waters. Science, 345(6199), 925–928. https://doi.org/10.1126/science.1253119

Cuéllar-Cardozo, J. A., Nossa-silva, D., & Vallejo, M. I. (2022). Diversidad y estructura florística en zonas riparias de un remanente de bosque seco. Colombia Forestal, 25(2), 70–84.

De Bello, F., Carmona, C. P., Mason, N. W. H., Sebastià, M. T., & Lepš, J. (2013). Which trait dissimilarity for functional diversity: Trait means or trait overlap? Journal of Vegetation Science, 24(5), 807–819. https://doi.org/10.1111/jvs.12008

Domínguez, E., & Fernández, H. (2009). Macroinvertebrados bentónicos sudamericanos. In Fundación Miguel Lillo. Fundación Miguel Lillo.

DRYFLOR. (2016). Plant diversity patterns in neotropical dry forests and their conservation implications. Science, 353(6306), 1383–1387. https://doi.org/10.1126/science.aaf5080

Elosegi, A., & Sabater, S. (2009). Conceptos y tècnicas en ecologìa fluvial: Vol. XXXIII (Issue 2). Fundación BBVA. https://doi.org/10.1007/s13398-014-0173-7.2

Erős, T., Podani, J., Schmera, D., Heino, J., & Poff, N. L. (2015). A proposed unified terminology of species traits in stream ecology. Freshwater Science, 34(3), 823–830. https://doi.org/10.1086/681623

Fajardo, A., Veneklaas, E., Obregón, S., & Beaulieu, N. (2000). Los Bosques de Galería: Guía para su apreciación y su conservación. Centro Internacional de Agricultura Tropical.

Ferreira, W. R., Hepp, L. U., Ligeiro, R., Macedo, D. R., Hughes, R. M., Kaufmann, P. R., & Callisto, M. (2017). Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in neotropical savanna headwater streams. Ecological Indicators, 72, 365–373. https://doi.org/10.1016/j.ecolind.2016.08.042

Galeano Rendón, E., Monsalve Cortes, L. M., & Mancera Rodríguez, N. J. (2017). Evaluación de la calidad ecológica de quebradas andinas en la cuenca del Río Magdalena, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 20(2). https://doi.org/10.31910/rudca.v20.n2.2017.398

García-Velázquez, L., & Gallardo, A. (2017). El ciclo global del nitrógeno. Una visión para el ecólogo terrestre. Ecosistemas, 26(1), 4–6. https://doi.org/10.7818/ECOS.2017.26-1.02

Gonzalez, A. (2018). Image J: una herramienta indispensable para medir el mundo biológico. Folium, October, 16.

Granados-Sanchez, D., Hernández-Garcia, M. A., & Lopez-Rios, G. F. (2006). Las Zonas Ribereñas. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 12(1), 55–69.

Gregory, S. V., Swanson, F. J., McKee, W. A., & Cummins, K. W. (1991). An Ecosystem Perspective of Riparian Zones. BioScience, 41(8), 540–551. https://doi.org/10.2307/1311607

Halffter, G. (1992). La diversidad Biológica de Iberoamérica (Primera). Intituto de ecología A.C. http://www.rds.org.co/aa/img_upload/cd3189bd6b9a1ea1575134c54f92a42c/Diversidad_1.PDF

Iñiguez-Armijos, C., Hampel, H., & Breuer, L. (2018). Land-use effects on the structural and functional composition of benthic and leaf-associated macroinvertebrates in four Andean streams. Aquatic Ecology, 52(1), 77–92. https://doi.org/10.1007/s10452-017-9646-z

Kibichii, S., Shivoga, W. A., Muchiri, M., & Miller, S. N. (2007). Macroinvertebrate assemblages along a land-use gradient in the upper River Njoro watershed of Lake Nakuru drainage basin, Kenya. Lakes and Reservoirs: Research and Management, 12(2), 107–117. https://doi.org/10.1111/j.1440-1770.2007.00323.x

Kominoski, J. S., Shah, J. J. F., Canhoto, C., Fischer, D. G., Giling, D. P., González, E., Griffiths, N. A., Larrañaga, A., LeRoy, C. J., Mineau, M. M., McElarney, Y. R., Shirley, S. M., Swan, C. M., & Tiegs, S. D. (2013). Forecasting functional implications of global changes in riparian plant communities. Frontiers in Ecology and the Environment, 11(8), 423–432. https://doi.org/10.1890/120056

Lemmon, P. E. (1956). A Spherical Densiometer For Estimating Forest Overstory Density. Forest Science, 2(4), 314–320. https://doi.org/10.1093/forestscience/2.4.314

Linares, J., & Fandiño, M. (2009). Estado Del Bosque Seco Tropical e Importancia Relativa De Su Flora Leñosa, Islas De La Vieja Providencia Y Santa Catalina, Colombia, Caribe Suroccidental. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 33(126), 1–15. http://www.accefyn.org.co/revista/Vol_33/126/5-16.pdf

Lourenço-Amorim, C., Neres-Lima, V., Moulton, T. P., Sasada-Sato, C. Y., Oliveira-Cunha, P., & Zandonà, E. (2014). Control of periphyton standing crop in an Atlantic Forest stream: The relative roles of nutrients, grazers, and predators. Freshwater Biology, 59(11), 2365–2373. https://doi.org/10.1111/fwb.12441

Lowrance, R., Altier, L. S., Newbold, J. D., Schnabel, R. R., Groffman, P. M., Denver, J. M., Correll, D. L., Gilliam, J. W., Robinson, J. L., Brinsfield, R. B., Staver, K. W., Lucas, W., & Todd, A. H. (1997). Water quality functions of riparian forest buffers in Chesapeake Bay watersheds. Environmental Management, 21(5), 687–712. https://doi.org/10.1007/s002679900060

Malacarne, T. J., Machado, N. R., & Moretto, Y. (2023). Influence of land use on the structure and functional diversity of aquatic insects in neotropical streams. Hydrobiologia, 0123456789. https://doi.org/10.1007/s10750-023-05207-5

Mason, N. W. H., & De Bello, F. (2013). Functional diversity: A tool for answering challenging ecological questions. Journal of Vegetation Science, 24(5), 777–780. https://doi.org/10.1111/jvs.12097

Melo, O., Fernandez-Méndez, F., & Villanueva, B. (2017). Light habitat, structure, diversity, and dynamic of the tropical dry forest. Colombia Forestal, 20(1), 19–30. https://doi.org/10.14483/udistrital.jour.colomb.for.2017.1.a02

Miserendino, M. L., & Masi, C. I. (2010). The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecological Indicators, 10(2), 311–319. https://doi.org/10.1016/j.ecolind.2009.06.008

Mosele Tonin, A., Ubiratan Hepp, L., & Gonçalves, J. F. (2018). Spatial Variability of Plant Litter Decomposition in Stream Networks: from Litter Bags to Watersheds. Ecosystems, 21(3), 567–581. https://doi.org/10.1007/s10021-017-0169-1

Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution, 28(3), 167–177. https://doi.org/10.1016/j.tree.2012.10.004

Moulton, T. P., & Wantzen, K. M. (2006). Conservation of tropical streams - special questions or conventional paradigms? Aquatic Conservation: Marine and Freshwater Ecosystems, 16, 659–663.

Munné, A., Prat, N., Solà, C., Bonada, N., & Rieradevall, M. (2003). A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(2), 147–163. https://doi.org/10.1002/aqc.529

Ometo, J. P., Martinelli, L. A., Ballester, M. V., Gessner, A., Krusche, A. V., Victoria, R. L., & Williams, M. (2000). Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracicaba river basin, south-east Brazil. Freshwater Biology, 44(2), 327–337. https://doi.org/10.1046/j.1365-2427.2000.00557.x

Pearson, R. G., Christidis, F., Connolly, N. M., Nolen, J. A., St Clair, R. M., Cairns, A., & Davis, L. (2017). Stream macroinvertebrate assemblage uniformity and drivers in a tropical bioregion. Freshwater Biology, 62(3), 544–558. https://doi.org/10.1111/fwb.12884

Pennington, R. T., Prado, D. E., & Pendry, C. A. (2000). Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography, 27(2), 261–273. https://doi.org/10.1046/j.1365-2699.2000.00397.x

Pizano, C., & Garcia, H. (2014). El Bosque Seco Tropical en Colombia. In Instituto de Investigacion Alexander von Humbolt (Primera Ed). Instituto Alexander von Humboldt (IAvH). https://doi.org/10.1017/CBO9781107415324.004

Posada, M. I., & Arroyave, M. del P. (2015). Análisis De Calidad Del Retiro Ribereño Para Diseño De Estrategias De Restauración Ecológica En El Río La Miel, Caldas, Colombia. Revista EIA, 12(23), 117–128. https://doi.org/10.24050/reia.v0i0.611

Rincón, J., Merchán, D., Sparer, A., Rojas, D., & Zarate, E. (2017). La descomposición de la hojarasca como herramienta para evaluar la integridad funcional de ríos altoandinos del sur del Ecuador. Revista de Biologia Tropical, 65(1), 321–334. https://doi.org/10.15517/rbt.v65i1.23233

Rodríguez-Romero, A. J., Rico-Sánchez, A. E., Sedeño-Díaz, J. E., & López-López, E. (2021). Characterization of the multidimensional functional space of the aquatic macroinvertebrate assemblages in a biosphere reserve (Central méxico). Diversity, 13(11). https://doi.org/10.3390/d13110546

Rojas, C. A. D., Motta-Díaz, Á. J., & Aranguren-Riaño, N. (2020). Study of the taxonomic and functional diversity of the macroinvertebrate assemblages in an Andean mountain river. Revista de Biologia Tropical, 68(S2), S132–S149. https://doi.org/10.15517/rbt.v68is2.44345

Romero-Duque, L. P., Rosero-Toro, J. H., Fernández-Lucero, M., Simbaqueba-Gutierrez, A., & Pérez, C. (2019). Trees and shrubs of the tropical dry forest of the Magdalena River upper watershed (Colombia). Biodiversity Data Journal, 7, 1–21. https://doi.org/10.3897/BDJ.7.e36191

S. Villéger , N. W. H. Mason, D. M. (2008). New Multidimensional Functional Diversity Indices for a Multifaceted Framework in Functional Ecology Published by : Ecological Society of America content in a trusted digital archive. America, 89(8), 2290–2301. https://doi.org/10.1890/07-1206.1

Segura, G., Balvanera, P., Durán, E., & Pérez, A. (2003). Tree community structure and stem mortality along a water availability gradient in a Mexican tropical dry forest. Plant Ecology, 169(2), 259–271. https://doi.org/10.1023/A:1026029122077

Sonoda, K. C., Monteles, J. S., Ferreira, A., & Gerhard, P. (2018). Chironomidae from eastern Amazon: Understanding the differences of land-use on functional feeding groups. Journal of Limnology, 77(Special Issue 1), 196–202. https://doi.org/10.4081/jlimnol.2018.1799

Stewart, T. W., & Downing, J. A. (2008). Macroinvertebrate communities and environmental conditions in recently constructed wetlands. Wetlands, 28(1), 141–150. https://doi.org/10.1672/06-130.1

Suárez, M. L., Vidal-Abarca, M. R., Del Mar Sánchez-Montoya, M., Alba-Tercedor, J., Álvarez, M., Avilés, J., Bonada, N., Casas, J., Jáimez-Cuéllar, P., Munné, A., Pardo, I., Prat, N., Rieradevall, M., Salinas, M. J., Toro, M., & Vivas, S. (2002). Las riberas de los ríos mediterráneos y su calidad: El uso del índice QBR. Limnetica, 21(3–4), 135–148.

Tamaris Turizo, C. E., & Rodríguez, J. (2015). Transporte De Materia Orgánica a Lo Largo De Un Río Tropical De Montaña En La Sierra Nevada De Santa Marta (Colombia). Acta Biológica Colombiana, 20(3), 209–216. https://doi.org/10.15446/abc.v20n3.45421

Tomanova, S., Goitia, E., & Helešic, J. (2006). Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia, 556(1), 251–264. https://doi.org/10.1007/s10750-005-1255-5

Tomanova, S., Tedesco, P. A., Campero, M., Van Damme, P. A., Moya, N., & Oberdorff, T. (2007). Longitudinal and altitudinal changes of macroinvertebrate functional feeding groups in neotropical streams: A test of the River Continuum Concept. Fundamental and Applied Limnology, 170(3), 233–241. https://doi.org/10.1127/1863-9135/2007/0170-0233

Valle, I., Buss, D., & Baptista, D. (2013). The influence of connectivity in forest patches, and riparian vegetation width on stream macroinvertebrate fauna. Brazilian Journal of Biology, 73(2), 231–238. https://doi.org/10.1590/S1519-69842013000200002

Vargas, W. (2015). A brief description of the vegetation, with special emphasis on the intermediate pioneers of the dry forests of La Jagua, in the upper basin of the Magdalena River in Huila. Colombia Forestal, 18(1), 47–70. https://doi.org/10.14483/udistrital.jour.colomb.for.2015.1.a03

Wantzen, K. M., & Wagner, R. (2006). Detritus processing by invertebrate shredders: a neotropical – temperate comparison. Journal of the North American Benthological Society, 25(1), 216–232. https://doi.org/10.1899/0887-3593(2006)25[216:DPBISA]2.0.CO;2

Wilkins, P. M., Cao, Y., Heske, E. J., & Levengood, J. M. (2015). Influence of a forest preserve on aquatic macroinvertebrates, habitat quality, and water quality in an urban stream. Urban Ecosystems, 989–1006. https://doi.org/10.1007/s11252-015-0464-6

Wootton, A., Pearson, R. G., & Boyero, L. (2019). Patterns of flow, leaf litter, and shredder abundance in a tropical stream. Hydrobiologia, 826(1), 353–365. https://doi.org/10.1007/s10750-018-3748-z

Zhang, M., Cheng, X., Geng, Q., Shi, Z., Luo, Y., & Xu, X. (2019). Leaf litter traits predominantly control litter decomposition in streams worldwide. Global Ecology and Biogeography, 28(10), 1469–1486. https://doi.org/10.1111/geb.12966

Publicado

2024-07-18

Como Citar

Cuellar Cardozo, J. A., & Bozdoğan, H. (2024). Influence of vegetation cover on the functional diversity of macroinvertebrates associated with leaf litter in a stream of the tropical dry forest. Actualidades Biológicas, 46(121), e46012. https://doi.org/10.17533/udea.acbi/v46n121a06

Edição

Seção

Artigos completos