Effects of two types of strength training on body composition, neuromuscular activation, and kinetic and kinematic variables

Authors

  • Jairo Alejandro Fernández Ortega Universidad Pedagógica Nacional
  • Luz Amelia Hoyos Cuartas Universidad Pedagógica Nacional
  • Darío Mendoza Ramírez Universidad Pedagógica Nacional

Keywords:

neuromuscular activation, maximum squat strength, muscle mass, vertical jump, resistance training, load displacement velocity

Abstract

Advances in our knowledge of the mechanical, physiological, biochemical and neuromuscular aspects underlying the different stimuli of strength training have transformed our understanding of this paradigm in recent decades. The purpose of this study is to examine the effects of two types of resistance training (RT). One is based on velocity-based training (VBT) and the other is based on percentage-based training (PBT) performed at 70-80% of 1RM (1 repetition maximum). Muscle mass (MM), bone mineral density (BMD), bone mineral component (BMC), surface electromyograms (EMG), maximum front squat strength (FSQ), vertical jump (VJ), paddling power (PP), and running speed over 30 m (RV30) are included. Thirty-one women were randomized to VBT (n=16) or PBT (n=15). The groups exercised three times per week for 12 weeks. FSQ, VJ, PP, RV30, BMD, BMC, MM, and EMG were measured before and after exercise. The VBT group trained at a mean propulsive velocity (MPV) of 0.68 ±0.08 m s - 1 and the PBT group trained at 70-80% 1RM. RT resulted in significant increases (p<0.05) in both groups for FSQ (VBT 33.79%, PBT 27.94%), VJ (VBT 19.11%, PBT 8.77%), RV30 (VBT 6. 27%, PBT 1. 66%), PP (VBT 32.2%, PBT 16.11%), fat-free MM (VBT 3.7%, PBT 2.64%), BMC (VBT 0.39%, PBT 0.25%), and BMD (VBT 0.76%, PBT 0.80%). No significant changes in EMG activity were observed in either group. Significant differences between the two exercise groups were observed in BMD, PP, BMC, and RV30. In conclusion, VBT training may provide a superior stimulus to induce neuromuscular adaptations that produce greater improvements in vertical jump, running velocity over 30 m, paddling force, bone mineral density, and similar or even greater increases in maximal squat strength, muscle mass, and bone mineral component than percentage-based training. In addition, velocity-based training showed small increases in surface electromyogram activity.

|Abstract
= 40 veces | PDF (ESPAÑOL (ESPAÑA))
= 8 veces|

Downloads

Download data is not yet available.

References

1. Banyard, H. G., Nosaka, K., & Haff, G. G. (2017). Reliability and Validity of the Load-Velocity Relationship to Predict the 1RM Back Squat. The Journal of Strength Conditioning Research, 31(7), 1897-1904. https://doi.org/10.1519/JSC.0000000000001657

2. Banyard, H. G., Tufano, J., J., Weakley, J. J. S., Wu, S., Jukic, I., & Nosaka, K. (2021). Superior Changes in Jump, Sprint, and Change-of-Direction Performance but Not Maximal Strength Following 6 Weeks of Velocity-Based Training Compared With 1-Repetition-Maximum Percentage-Based Training. International Journal of Sports Physiology and Performance, 16(2), 232-242. https://doi.org/10.1123/ijspp.2019-0999

3. Banyard, H. G., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2019). Comparison of the Effects of Velocity-Based Training Methods and Traditional 1RM-Percent-Based Training Prescription on Acute Kinetic and Kinematic Variables. International Journal of Sports Physiology and Performance, 14(2), 246-255. https://doi.org/10.1123/ijspp.2018-0147

4. Blazevich, A. J., & Jenkins, D. G. (2002). Effect of the Movement Speed of Resistance Training Exercises on Sprint and Strength Performance in Concurrently Training Elite Junior Sprinters. Journal of Sports Sciences, 20(12), 981-990. https://doi.org/10.1080/026404102321011742

5. Campos, G. E., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray, T. F., Ragg, K. E., Ratamess, N. A., Kraemer, W. J., & Staron, R. S. (2002). Muscular Adaptations in Response to Three Different Resistance-Training Regimens: Specificity of Repetition Maximum Training Zones. European Journal of Applied Physiology, 88(1-2), 50-60. https://doi.org/10.1007/s00421-002-0681-6

6. Cavarretta, D. J., Hall, E. E., & Bixby, W. R. (2019). The Acute Effects of Resistance Exercise on Affect, Anxiety, and Mood – Practical Implications for Designing Resistance Training Programs. International Review of Sport and Exercise Psychology, 12(1), 295-324. https://doi.org/10.1080/1750984X.2018.1474941

7. Conceição, F., Fernandes, J., Lewis, M., Gonzalez-Badillo, J. J., & Jimenez-Reyes, P. (2016). Movement Velocity as a Measure of Exercise Intensity in Three Lower Limb Exercises. Journal of Sports Sciences, 34(12), 1099-1106. https://doi.org/10.1080/02640414.2015.1090010

8. Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. The Journal of Strength Conditioning Research, 34(1), 46-53. https://doi.org/10.1519/jsc.0000000000003089

9. Fernandez Ortega, J. A., González de los Reyes, Y., & Garavito Peña, F. R. (2020). Effects of Strength Training Based on Velocity versus Traditional Training on Muscle Mass, Neuromuscular Activation, and Indicators of Maximal Power and Strength in Girls Soccer Players. Apunts Sports Medicine, 55(206), 53-61. https://doi.org/10.1016/j.apunsm.2020.03.002

10. García-Ramos, A., Janicijevic, D., González-Hernández, J. M., Keogh, J. W. L., & Weakley, J. (2020). Reliability of the Velocity Achieved during the Last Repetition of Sets to Failure and its Association with the Velocity of the 1-Repetition Maximum. PeerJ, 8, e8760. https://doi.org/10.7717/peerj.8760

11. Gonzalez-Badillo, J. J., Marques, M. C., & Sanchez-Medina, L. (2011). The Importance of Movement Velocity as a Measure to Control Resistance Training Intensity. Journal of Human Kinetics, 29a, 15-19. https://doi.org/10.2478/v10078-011-0053-6

12. Gonzalez-Badillo, J. J., Pareja-Blanco, F., Rodriguez-Rosell, D., Abad-Herencia, J. L., Del Ojo-Lopez, J. J., & Sanchez-Medina, L. (2015). Effects of Velocity-Based Resistance Training on Young Soccer Players of Different Ages. Journal of Strength Conditioning Research, 29(5), 1329-1338. https://doi.org/10.1519/jsc.0000000000000764

13. Gonzalez-Badillo, J. J., & Sanchez-Medina, L. (2010). Movement Velocity as a Measure of Loading Intensity in Resistance Training. International Journal of Sports Medicine, 31(5), 347-352. https://doi.org/10.1055/s-0030-1248333

14. González-Hernández, J., García Ramos, A., Castaño Zambudio, A., Capelo-Ramírez, F., Marquez, G., Boullosa, D., & Jimenez-Reyes, P. (2017). Mechanical, Metabolic, and Perceptual Acute Responses to Different Set Configurations in Full Squat. Journal of Strength and Conditioning Research, 34, 1. https://doi.org/10.1519/jsc.0000000000002117

15. Hakkinen, K., Kraemer, W. J., Newton, R. U., & Alen, M. (2001). Changes in Electromyographic Activity, Muscle Fibre and Force Production Characteristics during Heavy Resistance/Power Strength Training in Middle-Aged and Older Men and Women. Acta Physiologica Scandiva, 171(1), 51-62. https://doi.org/10.1046/j.1365-201x.2001.00781.x

16. Hisaeda, H., Miyagawa, K., Kuno, S.-Y., Fukunaga, T., & Muraoka, I. (1996). Influence of Two Different Modes of Resistance Training in Female Subjects. Ergonomics, 39(6), 842-852. https://doi.org/10.1080/00140139608964505

17. Holm, L., Reitelseder, S., Pedersen, T. G., Doessing, S., Petersen, S. G., Flyvbjerg, A., Andersen, J. L., Aagaard, P., & Kjaer, M. (2008). Changes in Muscle Size and MHC Composition in Response to Resistance Exercise with Heavy and Light Loading Intensity. Journal of Applied Physiology, 105(5), 1454-1461. https://doi.org/10.1152/japplphysiol.90538.2008

18. Ikezoe, T., Kobayashi, T., Nakamura, M., & Ichihashi, N. (2020). Effects of Low-Load, Higher-Repetition vs. High-Load, Lower-Repetition Resistance Training Not Performed to Failure on Muscle Strength, Mass, and Echo Intensity in Healthy Young Men: A Time-Course Study. Journal of Strength and Conditioning Research, 34(12), 3439-3445. https://doi.org/10.1519/jsc.0000000000002278

19. Jiménez-Reyes, P., Castaño-Zambudio, A., Cuadrado-Peñafiel, V., González-Hernández, J. M., Capelo-Ramírez, F., Martínez-Aranda, L. M., & González-Badillo, J. J. (2021). Differences between Adjusted vs. Non-Adjusted Loads in Velocity-Based Training: Consequences for Strength Training Control and Programming. PeerJ, 9, e10942. https://doi.org/10.7717/peerj.10942

20. Keeler, L. K., Finkelstein, L. H., Miller, W., & Fernhall, B. (2001). Early-Phase Adaptations of Traditional-Speed vs. Superslow Resistance Training on Strength and Aerobic Capacity in Sedentary Individuals. Journal of Strength and Conditioning Research, 15(3), 309-314. https://pubmed.ncbi.nlm.nih.gov/11710656/

21. Krieger, J. W. (2010). Single vs. Multiple Sets of Resistance Exercise for Muscle Hypertrophy: A Meta-Analysis. Journal of Strength and Conditioning Research, 24(4), 1150-1159. https://doi.org/10.1519/jsc.0b013e3181d4d436

22. Lopes, C. R., Aoki, M. S., Crisp, A. H., de Mattos, R. S., Lins, M. A., da Mota, G. R., Schoenfeld, B. J., & Marchetti, P. H. (2017). The Effect of Different Resistance Training Load Schemes on Strength and Body Composition in Trained Men. Journal of Human Kinetics, 58, 177-186. https://doi.org/10.1515/hukin-2017-0081

23. Maddalozzo, G. F., & Snow, C. M. (2000). High Intensity Resistance Training: Effects on Bone in Older Men and Women. Calcified Tissue International, 66(6), 399-404. https://doi.org/10.1007/s002230010081

24. McBride JM, B. J., Triplett-McBride T. (2003). Effect of Resistance Exercise Volume and Complexity on EMG, Strength, and Regional Body Composition. European Journal of Applied Physiology, 90(5-6), 626-632. https://doi.org/10.1007/s00421-003-0930-3

25. Morton, R. W., Oikawa, S. Y., Wavell, C. G., Mazara, N., McGlory, C., Quadrilatero, J., Baechler, B. L., Baker, S. K., & Phillips, S. M. (2016). Neither Load nor Systemic Hormones Determine Resistance Training-Mediated Hypertrophy or Strength Gains in Resistance-Trained Young Men. Journal of Applied Physiology, 121(1), 129-138. https://doi.org/10.1152/japplphysiol.00154.2016

26. Orange, S., Liefeith, A., Metcalfe, J., Robinson, A., Applegarth, M., & Liefeith, A. (2019). Effects of In-Season Velocity versus Percentage-Based Training in Academy Rugby League Players. International Journal of Sports Physiology and Performance, 15(4), 554-561. https://doi.org/10.1123/ijspp.2019-0058

27. Padulo, J., Mignogna, P., Mignardi, S., Tonni, F., & D'Ottavio, S. (2012). Effect of Different Pushing Speeds on Bench Press. International Journal of Sports Medicine, 33(5), 376-380. http://dx.doi.org/10.1055/s-0031-1299702

28. Pareja-Blanco, F., Alcazar, J., Cornejo-Daza, P. J., Sánchez-Valdepeñas, J., Rodriguez-Lopez, C., Hidalgo-de Mora, J., Sánchez-Moreno, M., Bachero-Mena, B., Alegre, L. M., & Ortega-Becerra, M. (2020). Effects of Velocity Loss in the Bench Press Exercise on Strength Gains, Neuromuscular Adaptations, and Muscle Hypertrophy. Scandinavian Journal of Medicine and Science in Sports, 30(11), 2154-2166. https://doi.org/10.1111/sms.13775

29. Pareja-Blanco, F., Rodriguez-Rosell, D., Sanchez-Medina, L., Gorostiaga, E. M., & Gonzalez-Badillo, J. J. (2014). Effect of Movement Velocity during Resistance Training on Neuromuscular Performance. International Journal of Sports Medicine, 35(11), 916-924. http://dx.doi.org/10.1055/s-0033-1363985

30. Pareja-Blanco, F., Rodriguez-Rosell, D., Sanchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., Yáñez-García, J. M., Morales-Álamo, D., Pérez-Suárez, I., Calbet, J. A. L., & Gonzalez-Badillo, J. J. (2017). Effects of Velocity Loss During Resistance Training on Athletic Performance, Strength Gains and Muscle Adaptations. Scandinavian Journal of Medicine and Science in Sports, 27(7), 724-735. https://doi.org/10.1111/sms.12678

31. Pruitt, L. A., Taaffe, D. R., & Marcus, R. (1995). Effects of a One-Year High-Intensity versus Low-Intensity Resistance Training Program on Bone Mineral Density in Older Women. Journal of Bone & Mineral Research, 10(11), 1788-1795. https://doi.org/10.1002/jbmr.5650101123

32. Rana, S. R., Chleboun, G. S., Gilders, R. M., Hagerman, F. C., Herman, J. R., Hikida, R. S., Kushnick, M. R., Staron, R. S., & Toma, K. (2008). Comparison of Early Phase Adaptations for Traditional Strength and Endurance, and Low Velocity Resistance Training Programs in College-Aged Women. Journal of Strength and Conditioning Research, 22(1), 119-127. https://doi.org/10.1519/jsc.0b013e31815f30e7

33. Rodríguez-Rosell, D, Yáñez-García, J. M., Mora-Custodio, R, Sánchez-Medina, L, Ribas-Serna, J, González-Badillo, J. J. (2021). Effect of Velocity Loss during Squat Training on Neuromuscular Performance. Scandinavian Journal of Medicine and Science in Sports, 31(8), 1621-1635. https://doi.org/10.1111/sms.13967

34. Sanchez-Medina, L., & Gonzalez-Badillo, J. (2011). Velocity Loss as an Indicator of Neuromuscular Fatigue during Resistance Training. Medicine and Science in Sports and Exercise, 43(9), 1725-1734. https://doi.org/10.1249/mss.0b013e318213f880

35. Sanchez-Moreno, M., Rodriguez-Rosell, D., Pareja-Blanco, F., Mora-Custodio, R., & Gonzalez-Badillo, J. J. (2017). Movement Velocity as Indicator of Relative Intensity and Level of Effort Attained During the Set in Pull-Up Exercise. Internationa Journal of Sports Physiology and Performance, 12(10), 1378-1384. https://doi.org/10.1123/ijspp.2016-0791

36. Schoenfeld, B. J., Grgic, J., Ogborn, D., & Krieger, J. W. (2017). Strength and Hypertrophy Adaptations between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-Analysis. Journal of Strength and Conditioning Research, 31(12), 3508-3523. https://doi.org/10.1519/jsc.0000000000002200

37. Schoenfeld, B. J., Grgic, J., Van Every, D. W., & Plotkin, D. L. (2021). Loading Recommendations for Muscle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continuum. Sports, 9(2), 32. https://doi.org/10.3390/sports9020032

38. Schoenfeld, B. J., Ogborn, D. I., & Krieger, J. W. (2015). Effect of Repetition Duration during Resistance Training on Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Medicine, 45(4), 577-585. https://doi.org/10.1007/s40279-015-0304-0

39. Schuenke, M. D., Herman, J. R., Gliders, R. M., Hagerman, F. C., Hikida, R. S., Rana, S. R., Ragg, K. E., & Staron, R. S. (2012). Early-phase Muscular Adaptations in Response to Slow-Speed versus Traditional Resistance-Training Regimens. European Journal of Applied Physiology, 112, 3585-3595. https://doi.org/10.1007/s00421-012-2339-3

40. Seitz, L. B., Reyes, A., Tran, T. T., Saez de Villarreal, E., & Haff, G. G. (2014). Increases in Lower-Body Strength Transfer Positively to Sprint Performance: A Systematic Review with Meta-Analysis. Sports Medicine, 44(12), 1693-1702. https://doi.org/10.1007/s40279-014-0227-1

41. Specker, B., Thiex, N. W., & Sudhagoni, R. G. (2015). Does Exercise Influence Pediatric Bone? A Systematic Review. Clinical Orthopaedics and Related Research, 473(11), 3658-3672. https://doi.org/10.1007/s11999-015-4467-7

42. Stone, W. J., & Coulter, S. P. (1994). Strength/Endurance Effects From Three Resistance Training Protocols With Women. Journal of Strength and Conditioning Research, 8(4), 231-234. https://journals.lww.com/nscajscr/abstract/1994/11000/strength_endurance_effects_from_three_resistance.5.aspx

Published

2024-11-20

How to Cite

Fernández Ortega, J. A., Hoyos Cuartas, L. A., & Mendoza Ramírez, D. (2024). Effects of two types of strength training on body composition, neuromuscular activation, and kinetic and kinematic variables. Expomotricidad, 2024. Retrieved from https://revistas.udea.edu.co/index.php/expomotricidad/article/view/358667

Issue

Section

13° Seminario Internacional de Entrenamiento Deportivo

Most read articles by the same author(s)