Usage of a commercial β-galactosidase from Kluyveromyces lactisin the hydrolysis of whey

Authors

  • Laura Julliet Beltran F. Universidad of Antioquia
  • Alejandro Acosta C. University of Antioquia

DOI:

https://doi.org/10.17533/udea.hm.18734

Keywords:

enzymatic hydrolysis, lactose, β-galactosidase, kinetic parameters, kluyveromyceslactis

Abstract

Introduction
 
The whey is the largest waste subproduct of the dairy industry. Due to its high values of BOD is considered a source of water and soil contamination when discarded without any treatment. An alternative for the disposal of this agroindustrial waste is its application as a culture medium for various fermentation processes after an enzymatic hydrolysis thus ensuring a greater availability of fermentable sugars for subsequent application in biotechnology, environment and / or food.
 
Objective
 
To evaluate the effects of pH, temperature and enzyme concentration on whey using a commercial β-galactosidase from Kluyveromyces lactis, and determine the kinetic parameters of the enzyme.
 
Materials and Methods
 
The hydrolysis of lactose was performed in buffered solutions of lactose and in whey as well, 5 levels were
evaluated for pH (4.5-8.5), temperature (25°C-65°C) and enzyme concentration (0.025 g/L to 0.5 g/L), all
the experiments were performed in triplicate in Erlenmeyer flask (100 mL) and analyzed using the Gra phPad Prism software.
 
conclusions
 
The best conditions of pH and temperature were 6.5°C and 45°C respectively, a 100% of hydrolysis was achieved in one hour with 0.1 g/L of enzyme. Furthermore, it was shown that the reaction rate of the enzyme is inhibited by galactose.
|Abstract
= 1254 veces | PDF (ESPAÑOL (ESPAÑA))
= 2440 veces|

Downloads

Download data is not yet available.

Author Biographies

Laura Julliet Beltran F., Universidad of Antioquia

Biotransformation Group - School of Microbiology, University of Antioquia, Medellín, Colombia.

Alejandro Acosta C., University of Antioquia

Biotransformation Group - School of Microbiology, University of Antioquia, Medellín, Colombia.

 

References

Valencia e, Ramírez ml. La industria de la leche y la contaminación del agua. Elementos: Ciencia y cultura. 2009; 16(73): 27-31.

Hatzinikolaou DG, Katsifas e, mamma D, Karagou-ni AD, christakopoulos P, Kekos D.Modeling of the simultaneous hydrolysis–ultrafiltration of whey per-meate by a thermostable β-galactosidase from Asper-gillus niger. Biochemical Engineering Journal. 2005; 24: 161-172.

Fu J, tseng y. Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Environ Microbiol. 1990; 56: 919-923.

Huang y, yang s. Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor, Bio-technol. Bioeng. 1998; 60: 498-507.

Ramakrishnan s, Hartley b. Fermentation of lacto-se by yeast cells secreting recombinant fungal lactase. Environ. Microbiol. 1993; 59: 4230-4235.

Illanes A, enzyme biocatalysis. 1a ed. Valparaiso: Springer; 2008.

ladero m, Perez m, santos A, Garcia-Ochoa F. Hy-drolysis of lactose by free and immobilized beta-ga-lactosidase from Thermus sp. strain T2. Biotechnol. Bioeng. 2003; 81: 241-252.

santos A, ladero m, Garcia-Ochoa. 1998. Kinetic modeling of lactose hydrolysis by a β-galactosidase from kluyveromyces fragilis. Enzyme and Microbial Technology. 1998; 22: 558-567.

Harju m, Kallioinen H, tossavainen. Lactose Hydro-lysis and other conversions in dairy products: Techno-logical aspects. International Dairy Journal 2012; 22: 104-109.

tomás cm. Estudo da hidrólise da lactose por β-galactosidase na forma livre e imobilizada. 1998; 67.

nagodawithana t, Reed G. Enzymes in Food Pro-cessing. 3rd ed. San Diego: Academic Press; 1993.

nunes mF, Roig sm, Alegre Rm. Produção e proprie-dade de ß-galactosidase de Kluyveromyces marxianus-NRRLY-2415. Revista de Farmácia e Bioquímica USP. 1993; 29(1): 25-30.

mahoney RR. Lactose: Enzymatic Modification. In: Advanced Dairy Chemistry. London: Fox PF. and P. McSweeney, Eds; 1997: 77-125.

Papayannakos n, markas G, Kekos D.Studies on modeling and simulation of lactose hydrolysis by free and immobilized β-galactosidase from Aspergillus ni-ger. ChemEng J. 1993; 52: 1-12.

Adam Ac, Rubio-texeira m, Polaina J. Lactose: The milk sugar from a biotechnological perspective. Crit. Rev. Food Sci. Nutr. 2004; 44(7-8): 553-7.

James e, noble, mark JA, bailey. Quantitation of protein. Methods in Enzymology. 2009; 463: 73-95.

AOAc International. Official Methods of Analysis, USA, 2011.

sacks Db. Carbohydrates. In: Burtis CA, Ashwoods ER, Editors. Textbook of Clinical Chemistry. Thirth Edition. Philadelphia: W.B Saunders Company; 1999. p: 750-808.

skoog DA, West Dm, Holler FJ and crouch sR. Fun-damentals of Analytical chemistry, Thompson Lear-ning – Brooks/Cole, 2004. Chap 29, “Kinetics Methods of Analysis”. p. 878-905.

nelson Dl, cox mm.Lehninger Principios de Bioquí-mica. 5a Edición. New York: W. H. Freeman and Com-pany; 2008.

berg Jm, tymoczko Jl, stryer l. Biochemistry. Se-venth Edition. 2010.

beadle bm, baase WA, Wilson Db. Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme. Biochemistry. 1999; 38(8): 2570-2576

shaikhsA, Khire Jm, Khan mI. Production of galac-tosidase from thermophilic fungus Rhizomucor sp. Biochim Biophys Acta. 1999; 1472(1-2): 239-45.

Pessela bc, Vian A, mateo c, Fernández-lafuente R, García Jl, Guisán Jm, et al. Overproduction of Thermus sp. Strain T2 beta-galactosidase in Escheri-chia coli and preparation by using tailor-made metal chelate supports. Appl Environ Microbiol. 2003; 69(4): 1967-72.

Adalberto PR, massabni Ac, Goulart AJ, contie-ro J, carmona ec, cardello l, et al. Production of β-galactosidase by TrichodermareeseiFTKO-39 in wheat bran: partial purification of two isozymes. Appl Biochem Biotechnol. 2006; 133(2): 163-70.

Hoyoux A, Jennes I, Dubois P, Genicot s, Dubail F, François Jm, et al. Cold-adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol. 2001; 67(4): 1529-35.

Fernandes s, Geueke b, Delgado O, coleman R. Beta-galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol. 2002; 58: 313-21.

Wadiak Dt, carbonellRG. Kinetic behavior of mi-croencapsulated β-galactosidase. Biotechnol. Bioeng. 1975; 17: 1157-1181.

berrueta J, Garcia t. Hidrólisis enzimática de lacto-sa en reactores de lecho fijo. Ing. Química. 1988; 236: 141-146.

yang st, Okos mR. A new graphical method for determining parameters in Michaelis-Menten-type kinetics for enzymatic lactose hydrolysis. Biotechnol. Bioeng. 1989; 34: 763-773.

Flaschel e, Raetz e, Renken A. The kinetics of lacto-se hydrolysis for the b-galactosidase from Aspergillus-niger. Biotechnol. Bioeng. 1982; 24: 2499-2518.

Adalberto PR, massabni Ac, carmona ec, Goulart AJ, marques DP, monti R, et al. Effect of divalent me-tal ions on the activity and stability of β-galactosidase isolated from Kluyveromyces lactis. Journal of Basic and Applied Pharmaceutical Sciences. 2010; 31: 143-150.

carrara cR, Rubiolo Ac. Determination of kinetics parameters for free and immobilized b-galactosidase. Process Biochem. 1996; 31(3): 243-248.

Jurado e, camacho F, luzon G and Vicaria Jm. A new kinetic model proposed for enzymatic hydrolysis of lactose by a β-galactosidase from Kluyveromyces fragilis. Enzyme and Microbial Technology 31 (2002): 300-309.

Guven RG, Kaplan A, Guven K, matpan F and Dogru m. Effects and various inhibitors on β-galactosidase purified from the thermoacidophilic Alicycloclobaci-llus acidocaldarius Subsp. Rittmannii isolated from An-tarctica. Biotechnology and Bioprocess Engineering. 2011; 16: 114-119.

martinez-bilbao m, Gaunt mt, Huber Re. E461H-beta-galactosidase (Escherichia coli): altered divalent metal specificity and slow but reversible metal inacti-vation. Biochemistry. 1995; 34(41):13437-42.

craig Db, Hall t, Goltz Dm. Escherichia coli α-galactosidase is heterogeneous with respect to a requirement for magnesium. Biometals. 2000; 13: 223-229.

sutendra G, Wong s, Fraser me, Huber Re. Beta-ga-lactosidase (Escherichia coli) has a second catalytically important Mg2+ site. Biochem Biophys Res Commun. 2007; 352(2): 566-70.

Harada m, Inohara m, nakao m, nakayama t, Kakudo A, shibano y, et al. Divalent metal ion re-quirements of a thermostable multimetal beta-ga-lactosidase from Saccharopolys porarectivirgula. J Biol Chem. 1994; 269(35): 22021-26.

Roth nJ, Huber Re. The beta-galactosidase (E. coli) reaction is partly facilitated by interactions of His-540 with the C6 hydroxyl of galactose. J Biol Chem. 1996; 271: 14296-302.

Osiriphun s and Jaturapiree. Isolation and Charac-terization of β-galactosidase from the thermophile B1.2. Asian Journal of Food and Agro-industry. 2009; 2(04): 135-143.

ladero m, santos A, García-Ochoa F. Kinetic mo-deling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis. Enzyme MicrobTechnol 2000; 27: 583-92.

Heng mH, Glatz ce. Ion exchange immobilization of charged β-galactosidase fusions for lactose hydroly-sis. Biotechnol Bioeng. 1994; 44: 745-52.

Kim cs, Ji es, Oh DK. Expression and Characteriza-tion Escherichia coli. Biotechnology Letters. 2003; 25: 1769-1774.

Published

2014-03-03

How to Cite

Beltran F., L. J., & Acosta C., A. (2014). Usage of a commercial β-galactosidase from Kluyveromyces lactisin the hydrolysis of whey. Hechos Microbiológicos, 3(2), 25–35. https://doi.org/10.17533/udea.hm.18734

Issue

Section

Artículos de investigación original

Most read articles by the same author(s)