Effect of a Cyanobacteria consortium on obtaining the gulupa´s vegetal biomass (Passiflora edulis f. Edulis sims) under field conditions in the municipality of Marinilla - Antioquia
DOI:
https://doi.org/10.17533/udea.hm.v11n1a02Keywords:
agrochemicals, biofertilizer, consortium, culture, Cyanobacteria, Gulupa (Passiflora edulis F. edulis Sims)Abstract
Introduction: Cyanobacteria possess the ability to fix nitrogen, produce vitamins and amino acids that stimulate plant growth, form associations with vascular and non-vascular plants, acts as biofertilizers, and as an alternative to the application of agrochemicals, reduce the harmful affect these have on the quality of the soils and human health. In culture of commercial interest, these microorganisms have been used to increase production although most research has focused on rice and other cereals. Gulupa (Passiflora edulis f. edulis Sims), is a fruit native to tropical regions. Its pleasant taste and antioxidant properties make it commercially attractive, especially for export, which has encouraged the development of this culture in the country.
Objective: The objective of this work was to evaluate the effect of a consortium of cyanobacteria on obtaining plant biomass from gulupa plants (Passiflora edulis f. edulis Sims.) under field conditions.
Methods: A comparative experimental study was designed. The biofertilizing effect of cyanobacteria was evaluated with three treatments. The growth of the plants was measured in terms of length of stem and roots, fresh weight of plant and roots, and number of leaves and branches during six months of planting.
Results and conclusion: The results obtained indicate that there is a response from the plant when inoculation with cyanobacteria is applied; however, it cannot be established which of the treatments induced that response.
Downloads
References
Creus CM. Microbial inoculants: Pieces of a puzzle that still needs to be assembled. Rev Argent Microbiol. 2017;5(1):207-209.
Youssef MMA, Eissa MFM. Biofertilizers and their role in management of plant parasitic nematodes. A review. J Biotechnol Pharmaceut Research. 2014;5(1):001-006.
Binder C, Garcia G, Andreoli R, Diaz J, Feola G, Wittensoldner M, et al. Simulating Human and Environmental Exposure from Hand-held Knapsack Pesticide Application: Be-wetspa-pest, An Integrative, Spatially Explicit Modeling Approach. J Agric Food Chem. 2016;64(20):3999-4008.
Instituto Nacional de Salud [INS]. Vigilancia y analisis del riesgo en salud publica. Protocolo de vigilancia en salud publica. Intoxicaciones por sustancias quimicas. Bogota D.C: Secretaria de Salud; 2016.
Organizacion Mundial de la Salud [OMS]. Mas medidas para mejorar la inocuidad de los alimentos. Ginebra: OMS; 2017.
Medina N, Leon O. Biotechnology and sustainable agriculture: biofertilizers and biopesticides. Natural Institute of Agricultural Science. La Habana: Pugwash Workshop; 2004.
Ghosh N. Promoting bio-fertilizers in Indian agriculture. Institute of Economic Growth. Delhi: University Enclave; 2002.
Prasanna R, Jaiswal P, Singh Y, Singh P. Influence of biofertilizers and organic amendments on nitrogenase activity and phototrophic biomass of soil under wheat. Acta Agronomica Hungarica. 2008;56(2):149-159.
Vaishampayan A, Sinha RP, Hader DP, Dey T, Gupta AK, Bhan U, et al. 2001. Cyanobacterial biofertilizers in rice agriculture. Botanical Rev. 2001;67: 453-516.
Rodriguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Systems. 2006;2:7.
Rai AK, Sharma NK. Phosphate metabolism in the cyanobacterium anabaena doliolum under salt stress. Current Microbiology. 2006;52:6-12.
Stihl A, Sommer U, Post AF. Alkaline phosphatase activities among populations of the colonyforming diazotrophic cyanobacterium Trichodesmium spp. (cyanobacteria) in the Red Sea. J Phycology. 2001;37(2):310-317.
Rastogi RP, Sinha RP. Biotechnological and Industrial Significance of Cyanobacterial Secondary Metabolites. Biotechnol Adv. 2009;27(4): 521-539.
Sharma NK, Tiwari SP, Tripathi K, Rai AK. Sustainability and cyanobacteria (Blue-green Algae): Facts and challenges. J Appl Phycology. 2001; 23:1059-1081.
Ranjan K, Priya H, Ramakrishnan B, Prasanna R, Venkatachalam S, Thapa S, et al. Cyanobacterial inoculation modifies the rhizosphere microbiome of rice planted to a tropical alluvial soil. Amsterdam. Appl Soil Ecol. 2016;108:195-203.
Shariatmadari Z, Riahi H, Hashtroudi MS, Ghassempour A, Aghashariatmadary Z. Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Sci Plant Nutrition. 2013;59(4):535- 547.
Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003;255:571-586.
Ocampo J, Wyckhuys K. Tecnologia para el Cultivo de la gulupa en Colombia (Passiflora edulis f. edulis Sims) purple passion fruit. Centro de Bio-sistemas de la Universidad Jorge Tadeo Lozano, Bogota: Centro Internacional de Agricultura Tropical – Ciat y Ministerio de Agricultura y Desarrollo Rural. Colombia; 2012.
Kumar M, Prasanna R, Bidyarania N, Babu S, Kumar Mishra A, Kumar A, et al. Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Scientia Horticulturae. 2013;164(17):94-101.
Cruz SMA. Uso biofertilizante de dos cultivos de cianobacterias, uno axenico y otro en consorcio, a nivel de invernadero para produccion parcialmente organica de frejol Phaseolus vulgaris. (tesis de pregrado). Ecuador: Universidad de las Fuerzas Armadas; 2009.
Aguirre N, Palacio J, Ramirez JJ. Caracteristicas limnologicas del embalse el Penol-Guatape, Colombia. Rev Ing Univ Medellin 2007;6(10):53-66.
Hernandez CA. Analisis ambiental de las grandes centrales hidroelectricas de colombia aplicando metodologia multiobjetivo. (tesis de pregrado). Colombia: Universidad de la Salle; 2011.
Munera L. Identificacion y cuantificacion de cianobacterias planctonicas en los embalses Abreo malpaso, Penol-Guatape y playas del oriente antioqueno empleando tecnicas moleculares. (Tesis de maestria). Medellin: Universidad de Antioquia; 2017.
Corporacion Autonoma Regional de las Cuencas de los Rios Negro - Nare [CORNARE] (2012). Evaluacion y zonificacion de riesgos por avenida torrencial, inundacion y movimiento en masa y dimensionamiento de procesos erosivos en el municipio de Marinilla. Marinilla: Gobernacion de Antioquia; 2012.
Ortiz G. Evaluacion del valor como biofertilizantes de Nostoc sp. y Anabaena sp. en plantulas de menta (Mentha spicata). (Tesis de pregrado). Bogota: Universidad Santo Tomas: Universidad Santo Tomas; 2014.
Santillana N, Arellano C, Zuniga D. Capacidad del rhizobium de promover el crecimiento en plantas de tomate (Lycopersicum esculentum Miller). Ecol Aplicada. 2005;4(1,2):47-51.
Luna M, Martinez P, Hernandez M, Arvizu S. Pacheco J. Caracterizacion de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Rev Fitotecnia Mex. 2013;36(1):63-69.
Karthikeyan N, Prasanna R, Nain L, Kaushik B. Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol. 2007;43(1):23-30.
Freire E, Koch A, Salvador L. Evaluacion del potencial biofertilizante de consorcios de cianobacterias en pasto raygrass (Lolium multiflorum). Rev Cientifica Ecuat. Especial de Suelos. 2016;4(1):13-19.
Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S, Thapa S. et al. Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiological Res. 2015;171:78-89.
Araujo D, Hernandez R, Vanegas J. Efecto de la inoculacion de cianobacterias en cultivos de interes comercial en zonas semiaridas de La Guajira. Rev Col Invest Agroindustriales. 2018;5(1):20-31.
Bidyarani N, Prassana R, Babu S, Hossain F, Kumar Saxena A. Enhancement of plant growth and yields in Chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiological Res. 2016;188-189:97-105.