Comparing forecasts for tourism dynamics in Medellín, Colombia
DOI:
https://doi.org/10.17533/udea.le.n86a08Keywords:
tourism demand, model evaluation and selection, forecasting and prediction methods, Bayesian statistics, Medellín.Abstract
Tourism is a topic of interest to many economies around the world, but it has received limited attention in Colombia. Knowing the periods of larger tourist inflows is important for predicting coverage in services for tourists. In this paper, we compare the estimation between classical and Bayesian regression in order to choose the best alternative to predict the number of tourist arrivals to Medellin. We also identify the most significant variables affecting the influx of tourists and the models providing better fit to the associated dynamics. According to our results, the Bayesian approach shows better estimates than the classic one. In addition, the variable month is significant to explain the demands for both Colombians and foreigners. The periods with the highest incidence of visits to the city are December-January and June-July, a pattern that repeats itself every year, which is crucial for planning hotel resources.
Downloads
References
Agencia EFE (18 de septiempre de 2014). Informalidad del turismo en Colombia impide su crecimiento, según expertos. El Heraldo. Recuperado de: http://www.elheraldo.co/turismo/informalidad-del-turismo-encolombia-impide-su-crecimiento-segun-expertos-167437
Bes, Christian & Sethi, Suresh (1988). “Concepts of forecast and decision horizons: Applications to dynamic stochastic optimization problems”, Mathematics of Operations Research, Vol. 13, No. 2, pp. 295-310.
Bonilla, Jorge Mauricio & Moreno, María Margarita (2010). Determinantes de la demanda de turismo en Colombia 2004-2007: seguridad, comercio y otros factores. Tesis de Pregrado para optar al título de Economista, Facultad de Economía, Universidad del Rosario, Colombia.
Bowerman, Bruce L.; Oconnell, Richard T. & Koheler, Anne B. (2007). Pronósticos, series de tiempo y regresión: un enfoque aplicado. México: Cengage Learning Editores S.A.
Brown, Robert Goodell (1959). Statistical Forecasting for Inventory Control. New York: McGraw-Hill.
Brown, Robert Goodell (1963). Smoothing, Forecasting and Prediction of Discrete Time Series. New Jersey: Prentice Hall, Englewood Cliffs.
Caridad y Ocerin, José María (1998). Econometria: Modelos Econométricos y series temporales. Barcelona: Editorial Reverté.
Cerda, Rosa & Leguizamón, Manuel (2005). “Análisis del comportamiento de la demanda turística urbana de Colombia”, Turismo y Sociedad, Vol. 4, pp. 70-98.
Chen, Kuan-Yu (2011). “Combining linear and nonlinear model in forecasting tourism demand”, Expert Systems with Applications, Vol. 38, No. 8, pp. 10368-10376.
Choi, T.; Li, D. & Yan, H. (2003). “Optimal two-stage ordering policy with Bayesian information updating”, Journal of the Operational Research Society, Vol. 54, No. 8, pp. 846-859.
Claveria, Oscar & Torra, Salvador (2014). “Forecasting tourism demand to Catalonia: Neural networks vs. time series models”, Economic Modelling, Vol. 36, pp. 220-228.
Cohen, Rochelle & Dunford, Fraser (1986). “Forecasting for Inventory Control: An Example of When ‘Simple’ Means ‘Better”’, Interfaces, Vol. 16, No. 6, pp. 95-99.
Croston, J.D. (1972). “Forecasting and stock control for intermittent demands”, Operational Research Quarterly, Vol. 42, No. 3, pp. 289-303.
Crouch, Goeffrey (1995). “A meta-analysis of tourism demand”, Annals of tourism research, Vol. 22, No. 1, pp. 103-118.
De Mol, Christine; Giannone, Domenico & Reichlin, Lucrezia (2008). “Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?”, Journal of Econometrics, Vol. 146, No. 2, pp. 318-328.
Fei, Xiang; Lu, Chung-Cheng & Liu, Ke (2011). “A bayesian dynamic linear model approach for real-time short-term freeway travel time prediction”, Transportation Research Part C: Emerging Technologies, Vol. 19, No. 6, pp. 1306-1318.
Galvis, Luis Armando & Aguilera, María Modesta (1999). “Determinantes de la demanda por turismo hacia Cartagena, 1987-1998”, Lecturas de Economía, No. 51, pp. 47-87.
Gelman, Andrew; Carlin, John; Stern, Hal & Rubin, Donald (2004). Bayesian Data Analysis (2nd Ed.). Boca Raton, FL: CRC Press, Taylor & Francis Group.
Gill, Jeff (2007). Bayesian methods: A social and behavioral sciences approach (2nd Ed.). United States of America: Chapman & Hall.
Guizzardi, Andrea & Mazzocchi, Mario (2010). “Tourism demand for Italy and the business cycle”, Tourism Management, Vol. 31, No. 3, pp. 367-377.
Guizzardi, Andrea & Stacchini, Annalisa (2015). “Real-time forecasting regional tourism with business sentiment surveys”, Tourism Management, Vol. 47, pp. 213-223.
Gutiérrez, Valentina & Vidal, Carlos (2008) “Modelos de gestión de inventarios en cadenas de abastecimiento: Revisión de la literatura”, Revista Facultad de Ingenieria, Vol. 43, pp. 134-149.
Harrison, J. & Stevens, C. (1976). “Bayesian Forecasting”, Journal of the Royal Statistical Society. Series B (Methodological), Vol. 38, No. 3, pp. 205-247.
Hellström, Jörgen (2002). “Count data modelling and tourism demand”, Umeå Economic Studies, No. 584. Swedend: Umeå University.
Hillier, Frederik & Hillier, Mark (2007). Métodos cuantitativos para administración (3th Ed). México D.F.: McGraw-Hill.
Kolasa, Stephan (2016). “Evaluating predictive count data distributions in retail sales forecasting”, International Journal of Forecasting, Vol. 32, No. 3, pp. 788-803.
Li, Gang; Song, Haiyan & Witt, Stephen (2005). “Recent developments in econometric modeling and forecasting”, Journal of Travel Research, Vol. 44, No. 1, pp. 82-99.
Lim, Christine (1999). “A meta-analytic review of international tourism demand”, Journal of Travel Research, Vol. 37, No. 3, pp. 273-284.
Liu, Xiangyun; Peng, Hongqin; Bai, Yun; Zhu, Yujun & Liao, Lueling (2014). “Tourism Flows Prediction based on an Improved Grey GM(1,1) Model”, Procedia - Social and Behavioral Sciences, Vol. 138, pp. 767-775.
López, Ledys & Márquez, José Ignacio (2012). “Proyecto de observatorio de turismo para Medellín y Antioquia”, Revista Soluciones de Posgrado EIA, Vol. 5, No. 9, pp. 79-96.
Martin, Andrew; Quinn, Kevin & Park, Jong (2011). “MCMCpack: Markov Chain Monte Carlo in R.”, Journal of Statistical Software, Vol. 42, No. 9, pp. 1-21.
Neelamegham, Ramya & Chintagunta, Pradeep (1999). “A Bayesian model to forecast new product performance in domestic and international markets”, Marketing Science,Vol. 18, No. 2, pp. 115-136.
Peng, Bo; Song, Haiyan & Crouch, Geoffrey (2014). “A meta-analysis of international tourism demand forecasting and implications for practice”, Tourism Management, Vol. 45, pp. 181-193.
Petris, Giovanni; Petrone, Sonia & Campagnoli, Patrizia (2009). Dynamic Linear Models with R. New York: Springer.
Samaratunga, Chand; Sethi, Suresh & Zhou, Xun Yu (1997). “Computational evaluation of hierarchical production control policies for stochastic manufacturing systems”, Operations Research, Vol. 45, No. 2, pp. 258-274.
Sarimveis, Haralambos; Patrinos, Panagiotis; Tarantilis, Chris & Kiranoudis, Chris (2008). “Dynamic modeling and control of supply chain systems: A review”, Computers & Operations Research, Vol. 35, No. 11, pp. 3530-3561.
Shoesmith, G.L. & Pinder, J.P. (2001). “Potential Inventory Cost Reductions Using Advanced Time Series Forecasting Techniques”, Journal of the Operational Research Society, Vol. 52, No. 11, pp. 1267-1275.
Song, Haiyan & Li, Gang (2008). “Tourism demand modelling and forecasting–A review of recent research”, Tourism Management, Vol. 29, No. 2, pp. 203-220.
Song, Haiyan; Gao, Bastian Z. & Lin, Vera (2013). “Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system”, International Journal of Forecasting, Vol. 29, No. 2, pp. 295-310.
Syntetos, Aris; Babai, M. Zied; Lengu, David & Altay, Nezih (2011). “Distributional assumptions for parametric forecasting of intermittent demand”. In: Altay, Nezih & Litteral, Lewis (Eds.), Service Parts Management. Demand Forecasting and Inventory Control (pp. 31-52). London: Springer.
Valencia, Marisol (2016). Dynamic model for the multiproduct inventory optimization with multivariate demand. Tesis para optar al título de: PhD en Ingeniería-Industria y organizaciones, Facultad de Minas, Escuela de Ingeniería de la Organización, Universidad Nacional de Colombia.
Vidal, Carlos; Londoño, Julio & Contreras, Fernando (2004) “Aplicación de Modelos de Inventarios en una Cadena de Abastecimiento de Productos de Consumo Masivo con una Bodega y N Puntos de Venta”, Ingeniería y Competitividad, Vol. 6, No. 1, pp. 35-52.
Wallström, Peter & Segerstedt, Anders (2010). “Evaluation of forecasting error measurements and techniques for intermittent demand”, International Journal of Production Economics, Vol. 128, No. 2, pp. 625-636.
West, Mike & Harrison, Jeff (1997). Bayesian Forecasting and Dynamic Models (2nd Ed.). New York. USA. : Springer Series in Statistics.
Witt, Stephen & Witt, Christine (1995). “Forecasting tourism demand: A review of empirical research”, International Journal of Forecasting, Vol. 11, No. 3, pp. 447-475.
Zellner, Arnold (1996). An introduction to bayesian inference in econometrics (2nd Ed.). Canadá: Wiley Classics Library.
Zhou, Ting; Bonham, Carl & Gangnes, Byron (2007). “Modelling the supply and demand for tourism: a fully identified VECM approach”, Working Papers, No. 2007-17. Department of Economics, University of Hawaii at Manoa.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Marisol Valencia Cárdenas, Juan Gabriel Vanegas López, Juan Carlos Correa Morales, Jorge Aníbal Restrepo Morales
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This page, by Universidad de Antioquia, is licensed under a Creative Commons Attribution License.
Authors who publish with this journal agree to retain copyright and grant the journal right of first publication, with the article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License allowing others to share it as long as they acknowledge its authorship and original publication in this journal.
Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), provided that these arrangements be not for profit and the journal be acknowledged as the original source of publication.
Authors are permitted and encouraged to post their papers online (e.g., in institutional repositories or on their websites), as it can lead to valuable exchanges as well as greater citation of the published work.