Performance and financial efficiency of three dairy production systems in southern Brazil

  • Raquel S. Schiavon Federal University of Pelotas
  • Mário D. Canever Federal University of Pelotas
  • Arnaldo D. Vieira Federal University of Pelotas
  • Vanessa Peripolli Federal Institute of Santa Catarina
  • Maila Palmeira Federal Institute of Santa Catarina
  • Hernani A. Silva Paraná Institute of Technical Assistance and Rural Extension
  • Elizabeth Schwegler Federal Institute of Santa Catarina
  • Thomaz Lucia Jr. Federal University of Pelotas
  • Ivan Bianchi Federal Institute of Santa Catarina
Keywords: cattle productivity, dairy cattle, dairy production, financial management, income, milk quality, production costs, profitability, technology adoption

Abstract

Background: Factors such as herd composition, productivity, milk quality and technology level influence the costs and profitability of milk production. Objective: To evaluate indicators that could predict production performance and financial efficiency in three dairy production systems in southern Brazil. Methods: Monthly records of milk quality, production performance and costs from fifty dairy farms were collected. The farms were classified into grazing, semi-feedlot, or feedlot systems. Total revenues, effective operational cost, total operational cost, total cost, gross margin, net income, total cost leveling point, profitability and final milk price were calculated. Results: The feedlot system resulted in greater herd size and milk production per lactating cow (p<0.05), but greater variable costs compared to semi-feedlot and grazing systems. On the other hand, the grazing system achieved greater profitability per year. Factor II (fat and protein rates), and Factor III (herd size and productivity per area) were associated with milk price per liter paid to the farmer (p<0.05), together accounting for approximately 13% of this price. Conclusion: Dairy production systems are influenced by area, lactating cows, productive performance, productivity per area, milk quality, and use of artificial insemination as well as supplementation (concentrate and minerals). Nearly 13% of milk price can be attributed to its fat and protein content as well as herd size and productivity per area.

|Abstract
= 293 veces | PDF
= 301 veces|

Downloads

Download data is not yet available.

Author Biographies

Raquel S. Schiavon, Federal University of Pelotas

https://orcid.org/0000-0003-0751-3223
Faculty of Veterinary Medicine, Federal University of Pelotas (UFPEL) - Capão do Leão Campus, Capão do Leão, RS, Brazil.

Mário D. Canever, Federal University of Pelotas

https://orcid.org/0000-0003-3221-3337
Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas (UFPEL) - Capão do Leão Campus, Capão do Leão, RS, Brazil.

Arnaldo D. Vieira, Federal University of Pelotas

https://orcid.org/0000-0001-6410-2354
Faculty of Veterinary Medicine, Federal University of Pelotas (UFPEL) - Capão do Leão Campus, Capão do Leão, RS, Brazil.

Vanessa Peripolli, Federal Institute of Santa Catarina

https://orcid.org/0000-0002-0463-4727
Federal Institute of Santa Catarina (IFC) - Araquari Campus, Araquari, SC, Brazil.

Maila Palmeira, Federal Institute of Santa Catarina

https://orcid.org/0000-0003-3284-7081
Federal Institute of Santa Catarina (IFC) - Araquari Campus, Araquari, SC, Brazil.

Hernani A. Silva, Paraná Institute of Technical Assistance and Rural Extension

https://orcid.org/0000-0002-3308-3899
Paraná Institute of Technical Assistance and Rural Extension (EMATER) - Rua da Bandeira, Curitiba, PR, Brazil.

Elizabeth Schwegler, Federal Institute of Santa Catarina

https://orcid.org/0000-0001-8028-491X
Federal Institute of Santa Catarina (IFC) - Araquari Campus, Araquari, SC, Brazil.

Thomaz Lucia Jr., Federal University of Pelotas

https://orcid.org/0000-0002-6609-7023
Faculty of Veterinary Medicine, Federal University of Pelotas (UFPEL) - Capão do Leão Campus, Capão do Leão, RS, Brazil.

Ivan Bianchi, Federal Institute of Santa Catarina

https://orcid.org/0000-0001-8236-3435
Federal Institute of Santa Catarina (IFC) - Araquari Campus, Araquari, SC, Brazil.

References

Aleixo SS, Souza JG, Ferraudo AS. Técnicas de análise multivariada na determinação de grupos homogêneos de produtores de leite. R Bras Zootec 2007; 36:2168–2175. DOI:https://doi.org/10.1590/S1516-35982007000900029

Alves AA, Lana AMQ, Yamaguchi LCT, Aroeira LJM. Análise de desempenho econômico da produção orgânica de leite: estudo de caso no Distrito Federal. Ciênc Agrotec 2009; 33:567–573. DOI:https://doi.org/10.1590/S1413-70542009000200032

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 77, de 26 de novembro de 2018. Diário Oficial da República Federativa do Brasil, Brasília, p.10, Seção 1, nº 230, 30 nov. 2018.

Britt JH, Cushman RA, Dechow CD, Dobson H, Humblot P, Hutjens MF, Jones GA, Ruegg PS, Sheldon IM, Stevenson JS. Invited review: Learning from the future-A vision for dairy farms and cows in 2067. J Dairy Sci 2018; 101:3722–3741.DOI: https://doi.org/10.3168/jds.2017-14025

Calker, KJV, Berentsen PBM, Giesen GWJ, Huirne RBM. Identifying and ranking attributes that determine sustainability in Dutch dairy farming. Agric Hum Values 2005; 22:53–63. DOI: https://doi.org/10.1007/s10460-004-7230-3

Coldebella A, Machado PF, Demétrio CGB. Contagem de células somáticas e produção de leite em vacas holandesas confinadas. R Bras Zootec 2004; 33:623–634. DOI:http://dx.doi.org/10.1590/S1516-35982004000300011

Índice Geral de Preços - IGP-DI, 2012. Disponívem em: http://www.portalbrasil.net/igp.htm. Acessado em: 5 fev. 2012.Embrapa 2019. Anuário Leite 2019. Disponível em: https://webcache.googleusercontent.com/search?q=cache:Or_vnm1y92UJ:https://ainfo.cnptia.embrapa.br/digital/bitstream/item/198698/1/Anuario-LEITE-2019.pdf+&cd=1&hl=pt-BR&ct=clnk&gl=br&client=firefox-b-d. Acessado em: 06 de abri de 2020

Gomes ST. Produtividade e renda líquida na produção de leite, 2006. Disponível em: http://www.ufv.br/der/docentes/stg/stg_artigos/stg_artigos.htm. Acessado em: 16 out. 2010. Gomes S.T. Mão-de-obra é a bola da vez, 2007. Disponível em: http://www.ufv.br/der/docentes/stg/stg_artigos/stg_artigos.htm. Acessado em: 14 nov. 2011.

Hemme T, Otte J. 2010. Status of and prospects for smallholder milk production - A global perspective. Food and Agricultural Organization of the United Nations, Rome, Italy.

Lopes MA, Dias AS, Carvalho FM, Lima ALR, Cardoso MG, Carmo EA. Efeito do tipo de mão de obra nos resultados econômicos de sistemas de produção de leite na região de Lavras (MG) nos anos 2004 e 2005. R Bras Agrociência 2010; 16:125-132. DOI:https://doi.org/10.1590/S1413-70542009000100035

Lipkens Z, Piepers S, De Visscher A, De Vliegher S. Evaluation of test-day milk somatic cell count information to predict intramammary infection with major pathogens in dairy cattle at drying off. J Dairy Sci 2019; 102:1113. DOI: https://doi.org/10.3168/jds.2018-15642

Lopes MA, Lima ALR, Carvalho FDM, Reis RP, Santos IC, Saraiva, FH. Efeito do tipo de sistema de criação nos resultados econômicos de sistemas de produção de leite na região de Lavras (MG). Ciênc Agrotec 2004; 28:1177–1189. DOI:https://doi.org/10.1590/S1413-70542004000500028

Ma W, Bicknell K, Renwick A. Production intensification and animal health expenditure on dairy farms in New Zealand. J Dairy Sci 2020; 103:1–10. DOI:https://doi.org/10.3168/jds.2018-16039

Ma W, Renwick A, Bicknell K. Higher intensity, higher profit? Empirical evidence from dairy farming in New Zealand. J Agric Econ 2018; 69:739–755. DOI:https://doi.org/10.1111/1477-9552.12261

Marques VM, Reis RP, Sáfadi T, Reis AJ. Custos e escalas na pecuária leiteira: Estudos de casos em Minas Gerais. Ciênc Agrotec 2002; 6:1027–1034. DOI:https://doi.org/10.1590/S0103-20032007000300002

Neves MF, Campos EM, Nogueira MP. Planejamento e gestão estratégica para o sistema agroindustrial do leite no estado de são Paulo. GESis Leite SP 2010; 341.

Norman HD, Lombard JE, Wright JR, Kopral CA, Rodriguez JM, Miller RH. Consequence of alternative standards for bulk tank somatic cell count of dairy herds in the United States. J Dairy Sci 2011; 94:6243–6256.DOI: https://doi.org/10.3168/jds.2011-4645

Okano MT, Vendrametto O, Santos OS. How to improve dairy production in Brazil through indicators for the economic development of milk chain. Mod Econ 2014; 5:663–669.DOI: https://doi.org/10.4236/me.2014.56062

Oliveira AS, Cunha DNFV, Campos JMS, Vale SMLR, Assis AJ. Identificação e quantificação de indicadores-referência de sistemas de produção de leite. R Bras Zootec 2007; 36:507–516. DOI:http://dx.doi.org/10.1590/S1516-35982007000200030

Simões ARP, Silva RM, Oliveira MVM, Cristaldo RO, Brito MCB. Avaliação econômica de três diferentes sistemas de produção de leite na região do Alto Pantanal Sul-mato-grossense. Agrar 2009; 2:153–167.

Solano C, León H, Pérez E, Tole L, Fawcett RH, Herrero M. Using farmer decision-making profiles and managerial capacity as predictors of farm management and performance in Costa Rican dairy farms.Agric Syst 2006; 88:395–428. DOI:https://doi.org/10.1016/j.agsy.2005.07.003

SPSS® 16. Statistical Package for the Social Sciences. User’s Guide, 2007.

Trevisi E, Bionaz M, Piccioli-cappelli F, Bertoni G. The management of intensive dairy farms can be improved for better welfare and milk yield. Livest Sci 2006; 103:231–236. DOI:https://doi.org/10.1016/j.livsci.2006.05.009

Published
2020-06-10
Section
Original research articles