Evaluation of the Effect of Black Soldier Fly Larvae Meal on the Growth of Aquatic Species: A Literature Review
DOI:
https://doi.org/10.17533/udea.rccp.e358626Keywords:
Animal nutrition, Aquatic animals, Aquatic environment, Green chemistry, Insects, Pisciculture, Proteins, Sustainable, developmentAbstract
Background: Given the growing need to feed a projected population of 9.6 billion by 2050, it is crucial to explore protein sources for the aquaculture industry. Objective: The objective of this article was to identify the nutritional and growth effects observed in aquatic species fed with black soldier fly larvae meal (BSFLM) through a literature review. Methods: A systematic literature review was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The research for relevant studies was carried out on June 10, 2024, using databases such as ScienceDirect, Google Scholar, SciELO, and MDPI. Results: The results indicate that the inclusion of BSFLM in aquaculture diets can replace up to 100% of soybean meal in species such as juvenile grass carp (Ctenopharyngodon idellus) without significantly affecting final body weight or specific growth rate (SGR). In tilapia (Oreochromis niloticus), the inclusion of 20% BSFLM resulted in a significant increase in daily weight gain, improving the biosynthesis of fatty acids and amino acids. For white shrimp (Litopenaeus vannamei), an inclusion of up to 22.5% BSFLM had no negative impact on specific growth rate or feed efficiency. In Atlantic salmon (Salmo salar), the inclusion of up to 8% BSFLM did not adversely affect growth or feed performance. Conclusion: BSFLM can replace up to 61.3% of fishmeal and 95.4% of fish oil, using fewer resources
Downloads
References
Abdel-Tawwab M, Khalil RH, Metwally AA, Shakweer MS, Khallaf MA, Abdel-Latif H MR. Effects of black soldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, Dicentrarchus labrax. Aquaculture 2020; 522: 1-8. https://doi.org/10.1016/j.aquaculture.2020.735136
Ahmad C, Saima N, Durali D. Effect of Insect Feed on Fish Growth: A Review. Asian Fish Sci. 2024; 37(1): 52-68. https://doi.org/10.33997/j.afs.2024.37.1.004
Aragão C, Gonçalves AT, Costas B, Azeredo R, Xavier MJ, Engrola S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals 2022; 12(9):12111. https://doi.org/10.3390/ani12091211
Belghit I, Liland NS, Gjesdal P, Biancarosa I, Menchetti E, Li Y, Waagbø R, Krogdahl Å, Lock EJ. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 2019; 503: 609-619. https://doi.org/10.1016/j.aquaculture.2018.12.032
Berenbaum MR, Bush DS, Liao LH. Cytochrome P450-mediated mycotoxin metabolism by plant-feeding insects. Curr Opin Insect Sci. 2021; 43: 85-91. https://doi.org/10.1016/j.cois.2020.11.007
Bingqian N, Shah AA, Ullah S, Khan RU, Khan MS, Zaman A, Muhammad K. Exploring the Role of Insects as Sustainable Feed in Aquaculture Nutrition and Enhancing Antioxidant Capacity, Growth and Immune Response. Turk J Fish Aquat Sci. 2024; 24(5): 1-12. https://doi.org/10.4194/TRJFAS24581
Borgogno M, Dinnella C, Iaconisi V, Fusi R, Scarpaleggia C, Schiavone A, Monteleone E, Gasco L, Parisi G. Inclusion of Hermetia illucens larvae meal on rainbow trout (Oncorhynchus mykiss) feed: effect on sensory profile according to static and dynamic evaluations. J Sci Food Agric. 2017; 97(10): 3402-3411. https://doi.org/10.1002/jsfa.8191
Boyd CE, McNevin AA, Davis RP. The contribution of fisheries and aquaculture to the global protein supply. Food Sec. 2022; 14: 805-827. https://doi.org/10.1007/s12571-021-01246-9
Bruni L, Randazzo B, Cardinaletti G, Zarantoniello M, Mina F, Secci G, Tulli F, Olivotto I, Parisi G. Dietary inclusion of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss): Lipid metabolism and fillet quality investigations. Aquaculture 2020; 529: 735678. https://doi.org/10.1016/j.aquaculture.2020.735678
Chaix-Bar M, Ndambi A, Naser El Deen S, de Raad S, Mohammed E, Koomen I. Feasibility study: black soldier fly production for animal feed in Ethiopia. Wageningen: Stichting Wageningen Research Ethiopia, 2023. 34 p. Available in: https://doi.org/10.18174/637480
Chen Y, Chi S, Zhang S, Dong X, Yang Q, Liu H, Tan B, Xie S. Evaluation of the Dietary Black Soldier Fly Larvae Meal (Hermetia illucens) on Growth Performance, Intestinal Health, and Disease Resistance to Vibrio parahaemolyticus of the Pacific White Shrimp (Litopenaeus vannamei). Front Mar Sci. 2021; 8: 706463. https://doi.org/10.3389/fmars.2021.706463
Cheng AC, Shiu YL, Chiu ST, Ballantyne R, Liu CH. Effects of chitin from Daphnia similis and its derivative, chitosan on the immune response and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2021; 119: 329-338. https://doi.org/10.1016/j.fsi.2021.10.017
Cummins V, Rawles S, Thompson K, Velasquez A, Kobayashi Y, Hager J, Webster C. Evaluation of black soldier fly ( Hermetia illucens ) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp ( Litopenaeus vannamei). Aquaculture 2017; 473: 337-344. https://doi.org/10.1016/j.aquaculture.2017.02.022
Diener S, Studt Solano NM, Roa Gutiérrez F, Zurbrügg C, Tockner K. Biological Treatment of Municipal Organic Waste using Black Soldier Fly Larvae. Waste Biomass Valor. 2011; 2: 357-363. https://doi.org/10.1007/s12649-011-9079-1
Dumas A, Raggi T, Barkhouse J, Lewis E, Weltzien E. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture 2018; 492: 24-34. https://doi.org/10.1016/j.aquaculture.2018.03.038
Eide LH, Rocha SDC, Morales-Lange B, Kuiper RV, Dale OB, Djordjevic B, Hooft JM, Øverland M. Black soldier fly larvae (Hermetia illucens) meal is a viable protein source for Atlantic salmon (Salmo salar) during a large-scale controlled field trial under commercial-like conditions. Aquaculture 2024; 579: 1-23. https://doi.org/10.1016/j.aquaculture.2023.740194
Elia AC, Capucchio MT, Caldaroni B, Magara G, Dörr AJM, Biasato I, Biasibetti E, Righetti M, Pastorino P, Prearo M, Gai F, Schiavone A, Gasco L. Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture 2018; 496: 50-57. https://doi.org/10.1016/j.aquaculture.2018.07.009
Fisher HJ, Collins SA, Hanson C, Mason B, Colombo SM, Anderson DM. Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). Aquaculture 2020; 521: 734978. https://doi.org/10.1016/j.aquaculture.2020.734978
Gasco L, Henry M, Piccolo G, Marono S, Gai F, Renna M, Lussiana C, Antonopoulou, E, Mola P, Chatzifotis S. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim Feed Sci Technol. 2016; 220: 34-45. https://doi.org/10.1016/j.anifeedsci.2016.07.003
Glencross BD, Baily J, Berntssen MHG, Hardy R, MacKenzie S, Tocher DR. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev Aquac. 2020; 12(2): 703-758. https://doi.org/10.1111/raq.12347
Guzman-Pincheira C, Andrade-Cuvi MJ, Perez JCB, Araujo-Silva G, Quintero-Florez A. Is per capita fish consumption in Latin America aligned with international recommendations for a healthy diet?. Food Sci Tech. 2024; 44: e00171. https://doi.org/10.5327/fst.00171
Hardy RW. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac res. 2010; 41(5), 770-776. https://doi.org/10.1111/j.1365-2109.2009.02349.x
Henry M, Gasco L, Piccolo G, Fountoulaki E. Review on the use of insects in the diet of farmed fish: Past and future. Anim Feed Sci Techno. 2015; 203: 1-22. https://doi.org/10.1016/j.anifeedsci.2015.03.001
Hu Z, Li H, Liu S, Xue R, Sun J, Ji H. Assessment of black soldier fly (Hermetia illucens) larvae meal as a potential substitute for soybean meal on growth performance and flesh quality of grass carp Ctenopharyngodon idellus. Anim Nutri. 2023; 14: 425-449. https://doi.org/10.1016/j.aninu.2023.06.006
Kariuki MW, Barwani DK, Mwashi V, Kioko JK, Munguti JM, Tanga CM, Kiiru P, Gicheha MG, Osuga IM. Partial Replacement of Fishmeal with Black Soldier Fly Larvae Meal in Nile Tilapia Diets Improves Performance and Profitability in Earthen Pond. Sci Afr. 2024; 24: e02222. https://doi.org/10.1016/j.sciaf.2024.e02222
Kerton FM. UN Sustainable Development Goals 14 and 15 – Life below water, Life on land. RSC Sustain. 2023; 1(3): 401-409. https://doi.org/10.1039/d3su90010j
Knorr D, Augustin MA. Food systems restoration.
Sustain Food Technol. 2024; 2(5): 1365-1390. https://doi.org/10.1039/D4FB00108G
Krogdahl Å, Penn M, Thorsen J, Refstie S, Bakke AM. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac res. 2010; 41(3): 333-344. https://doi.org/10.1111/j.1365-2109.2009.02426.x
Lange KW, Nakamura Y. Potential contribution of edible insects to sustainable consumption and production. Front sustain. 2023; 4: 1-17. https://doi.org/10.3389/frsus.2023.1112950
Leeper A, Benhaïm D, Smárason B, Knobloch S, Ómarsson KL, Bonnafoux T, Pipan M, Koppe W, Bjornsdottir R, Øverland M. Feeding black soldier fly larvae (Hermetia illucens) reared on organic rest streams alters gut characteristics of Atlantic salmon (Salmo salar). J Insects Food Feed. 2022; 8(11): 1355-1372. https://doi.org/10.3920/JIFF2021.0105
Li S, Ji H, Zhang B, Zhou J, Yu H. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture 2017; 477: 62-70. https://doi.org/10.1016/j.aquaculture.2017.04.015
Limbu SM, Shoko AP, Ulotu EE, Luvanga SA, Munyi FM, John JO, Opiyo MA. Black soldier fly (Hermetia illucens, L.) larvae meal improves growth performance, feed efficiency and economic returns of Nile tilapia (Oreochromis niloticus, L.) fry. Aquac fish fish. 2022; 2(3): 167-178. https://doi.org/10.1002/aff2.48
Linh NV, Wannavijit S, Tayyamath K, Dinh-Hung N, Nititanarapee T, Sumon MA, Srinual O, Permpoonpattana P, Doan HV, Brown CL. Black Soldier Fly (Hermetia illucens) Larvae Meal: A Sustainable Alternative to Fish Meal Proven to Promote Growth and Immunity in Koi Carp (Cyprinus carpio var. koi). Fishes 2024; 9(2): 53. https://doi.org/10.3390/fishes9020053
Lu R, Chen Y, Yu W, Lin M, Yang G, Qin C, Meng X, Zhang Y, Ji H, Nie G. Defatted black soldier fly (Hermetia illucens) larvae meal can replace soybean meal in juvenile grass carp (Ctenopharyngodon idellus) diets. Aquac Rep. 2020; 18: 100520. https://doi.org/10.1016/j.aqrep.2020.100520
Luo Z, Tan XY, Liu XJ, Wen H. Effect of dietary betaine levels on growth performance and hepatic intermediary metabolism of GIFT strain of Nile tilapia Oreochromis niloticus reared in freshwater. Aquac Nutr. 2011; 17(4), 361-367. https://doi.org/10.1111/j.1365-2095.2010.00805.x
Macusi ED, Cayacay MA, Borazon EQ, Sales AC, Habib A, Fadli N, Santos MD. Protein Fishmeal Replacement in Aquaculture: A Systematic Review and Implications on Growth and Adoption Viability. Sustainability 2023; 15(16): 12500. https://doi.org/10.3390/su151612500
Magalhães R, Sánchez-López A, Leal RS, Martínez-Llorens S, Oliva-Teles A, Peres H. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 2017; 476: 79-85. https://doi.org/10.1016/j.aquaculture.2017.04.021
Moutinho S, Pedrosa R, Magalhães R, Oliva-Teles A, Parisi G, Peres H. Black soldier fly (Hermetia illucens) pre-pupae larvae meal in diets for European seabass (Dicentrarchus labrax) juveniles: Effects on liver oxidative status and fillet quality traits during shelf-life. Aquaculture 2021; 533: 1-35. https://doi.org/10.1016/j.aquaculture.2020.736080
Moutinho S, Oliva-Teles A, Fontinha F, Martins N, Monroig Ó, Peres H. Black soldier fly larvae meal as a potential modulator of immune, inflammatory, and antioxidant status in gilthead seabream juveniles. Comp Biochem Physiol B Biochem Mol Biol. 2024; 271: 110951. https://doi.org/10.1016/j.cbpb.2024.110951
Munthali M, Chilora L, Goliath M, Burke W, Benbow M, Kangʼombe J, Safalaoh A. The Economic Cost-benefit Analysis of Black Soldier Fly as an Alternative Animal and Fish Feed Ingredient in Malawi. AgEcon Search
; 32. https://doi.org/10.22004/ag.econ.338590
Nogales-Mérida S, Gobbi P, Józefiak D, Mazurkiewicz J, Dudek K, Rawski M, Kierończyk B, Józefiak A. Insect meals in fish nutrition. Rev Aquac. 2019; 11(4): 1080-1103. https://doi.org/10.1111/raq.12281
Novriadi R, Davies S, Triatmaja KIK, Hermawan M, Kontara EKM, Tanaka B, Rinaldy A, Nugroho JE. Black Soldier Fly (Hermetia illucens) as an Alternative to Marine Ingredients Elicits Superior Growth Performance and Resistance to Vibrio harveyi Infection for Pacific White Shrimp (Litopenaeus vannamei). Turk J Fish Aquat Sci. 2024;24(1):24343. https://doi.org/10.4194/TRJFAS24343
Nunes AJP, Yamamoto H, Simões JP, Pisa JL, Miyamoto N, Leite JS. The Black Soldier Fly (Hermetia illucens) Larvae Meal Can Cost-Effectively Replace Fish Meal in Practical Nursery Diets for Post-Larval Penaeus vannamei under High-Density Culture. Fishes. 2023;8(12):605. https://doi.org/10.3390/fishes8120605
Odhiambo FA, Manyala J, Ndong’AM, Museve E, Otieno HMO. Effect of Black Soldier Fly (Hermetia illucens) Larvae Feed Supplement on Length-Weight Relationship of Nile Tilapia (Oreochromis niloticus). Innovations in Agriculture. 2023;6:1-5. https://doi.org/10.25081/ia.2023-026
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:71. https://doi.org/10.1136/bmj.n71
Pulido-Rodriguez LF, Bruni L, Secci G, Moutinho S, Peres H, Petochi T, Marino G, Tibaldi E, Parisi G. Growth, Hepatic Enzymatic Activity, and Quality of European Seabass Fed on Hermetia illucens and Poultry By-Product Meal in a Commercial Farm. Animals. 2024;14(10):1449. https://doi.org/10.3390/ani14101449
Radhakrishnan G, Liland NS, Koch MW, Lock EJ, Philip AJP, Belghit I. Evaluation of black soldier fly larvae meal as a functional feed ingredient in Atlantic salmon (Salmo salar) under farm-like conditions. Frontiers in Aquaculture. 2023;2:1239402. https://doi.org/10.3389/faquc.2023.1239402
Rawski M, Mazurkiewicz J, Kierończyk B, Józefiak D. Black Soldier Fly Full-Fat Larvae Meal Is More Profitable Than Fish Meal and Fish Oil in Siberian Sturgeon Farming: The Effects on Aquaculture Sustainability, Economy and Fish GIT Development. Animals. 2021;11(3):604. https://doi.org/10.3390/ani11030604
Renna M, Schiavone A, Gai F, Dabbou S, Lussiana C, Malfatto V, Prearo M, Capucchio MT, Biasato I, Biasibetti E, De Marco M, Brugiapaglia A, Zoccarato I, Gasco L. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. Anim Sci Biotechnol. 2017;8(1):57. https://doi.org/10.1186/s40104-017-0191-3
Roccatello R, Endrizzi I, Aprea E, Dabbou S. Insect-based feed in aquaculture: A consumer attitudes study. Aquaculture. 2024;582:740512. https://doi.org/10.1016/j.aquaculture.2023.740512
Rocha CP, Cabral HN, Marques JC, Gonçalves AMM. A Global Overview of Aquaculture Food Production with a Focus on the Activity’s Development in Transitional Systems—The Case Study of a South European Country (Portugal). J Mar Sci Eng. 2022;10(3):417. https://doi.org/10.3390/jmse10030417
Rogers AJ. Aquaculture in the Ancient World: Ecosystem Engineering, Domesticated Landscapes, and the First Blue Revolution. J Archaeol Res. 2023;32:427-491. https://doi.org/10.1007/s10814-023-09191-1
Sørensen SL, Park Y, Gong Y, Vasanth GK, Dahle D, Korsnes K, Phuong TH, Kiron V, Øyen S, Pittman K, Sørensen M. Nutrient Digestibility, Growth, Mucosal Barrier Status, and Activity of Leucocytes From Head Kidney of Atlantic Salmon Fed Marine- or Plant-Derived Protein and Lipid Sources. Front Immunol. 2020;11:623726. https://doi.org/10.3389/fimmu.2020.623726
Sumbule EK, Ambula MK, Osuga IM, Changeh JG, Mwangi DM, Subramanian S, Salifu D, Alaru PAO, Githinji M, van Loon JJA, Dicke M, Tanga CM. Cost-Effectiveness of Black Soldier Fly Larvae Meal as Substitute of Fishmeal in Diets for Layer Chicks and Growers. Sustainability. 2021;13(11):6074. https://doi.org/10.3390/su13116074
Suryati T, Julaeha E, Farabi K, Ambarsari H, Hidayat AT. Lauric Acid from the Black Soldier Fly (Hermetia illucens) and Its Potential Applications. Sustainability. 2023;15(13):10383. https://doi.org/10.3390/su151310383
Tacon AGJ, Metian M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture. 2008;285(1-4):146-158. https://doi.org/10.1016/j.aquaculture.2008.08.015
Tippayadara N, Dawood MAO, Krutmuang P, Hoseinifar SH, Doan HV, Paolucci M. Replacement of Fish Meal by Black Soldier Fly (Hermetia illucens) Larvae Meal: Effects on Growth, Haematology, and Skin Mucus Immunity of Nile Tilapia, Oreochromis niloticus. Animals. 2021;11(1):193. https://doi.org/10.3390/ani11010193
Usman U, Fahrur M, Kamaruddin K, Asaad A, Fahmi M. The utilization of black soldier fly larvae meal as a substitution of fish meal in diet for white shrimp, Litopenaeus vannamei, grow-out. IOP Conf Ser Earth Environ Sci. 2021;860:012023. https://doi.org/10.1088/1755-1315/860/1/012023
Van Der Fels-Klerx HJ, Camenzuli L, Belluco S, Meijer N, Ricci A. Food Safety Issues Related to Uses of Insects for Feeds and Foods. Compr Rev Food Sci Food Saf. 2018;17(5):1172-1183. https://doi.org/10.1111/1541-4337.12385
Verma N, Talwar P, Upadhyay A, Singh R, Lindenberger C, Pareek N, Sarangi PK, Zorpas AA, Vivekanand V. Food-Energy-Water Nexus in compliance with Sustainable Development Goals for integrating and managing the core environmental verticals for sustainable energy and circular economy. Sci Total Environ. 2024;930:172649. https://doi.org/10.1016/j.scitotenv.2024.172649
Wang G, Peng K, Hu J, Yi C, Chen X, Wu H, Huang Y. Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets. Aquaculture 2019;507:144-154. https://doi.org/10.1016/j.aquaculture.2019.04.023
Wang G, Peng K, Hu J, Mo W, Wei Z, Huang Y. Evaluation of defatted Hermetia illucens larvae meal for Litopenaeus vannamei: effects on growth performance, nutrition retention, antioxidant and immune response, digestive enzyme activity and hepatic morphology. Aquac Nutr. 2021;27(4):986-997. https://doi.org/10.1111/anu.13240
Ye B, Li J, Xu L, Liu H, Yang M. Metabolomic Effects of the Dietary Inclusion of Hermetia illucens Larva Meal in Tilapia. Metabolites 2022;12(4):286. https://doi.org/10.3390/metabo12040286
Zarantoniello M, de Oliveira AA, Sahin T, Freddi L, Torregiani M, Tucciarone I, Chemello G, Cardinaletti G, Gatto E, Parisi G, Bertolucci C, Riolo P, Nartea A, Gioacchini G, Olivotto I. Enhancing Rearing of European Seabass (Dicentrarchus labrax) in Aquaponic Systems: Investigating the Effects of Enriched Black Soldier Fly (Hermetia illucens) Prepupae Meal on Fish Welfare and Quality Traits. Animals 2023;13(12):1921. https://doi.org/10.3390/ani13121921
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Colombiana de Ciencias Pecuarias

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors enable RCCP to reprint the material published in it.
The journal allows the author(s) to hold the copyright without restrictions, and will allow the author(s) to retain publishing rights without restrictions.