Avaliação do efeito da refeição de larvas de mosca do soldado negro no crescimento de espécies aquáticas: Uma revisão da literatura

Autores

DOI:

https://doi.org/10.17533/udea.rccp.e358626

Palavras-chave:

Animais aquáticos, Desenvolvimento sustentável, insetos, meio aquático, nutrição animal, piscicultura, proteínas, química verde

Resumo

Antecedentes: Dada a necessidade crescente de alimentar uma população projectada de 9,6 mil milhões de pessoas até 2050, é crucial explorar fontes de proteína para a indústria da aquacultura. Objectivo: O objectivo deste artigo foi identificar os efeitos nutricionais e de crescimento observados em espécies de aquacultura alimentadas com farinha de larva de mosca soldado negra (BSFLM) através de uma revisão bibliográfica. Métodos: Foi realizada uma revisão sistemática da literatura seguindo as diretrizes PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). A pesquisa de estudos relevantes foi realizada no dia 10 de junho de 2024, utilizando bases de dados como a ScienceDirect, Google Scholar, SciELO e MDPI. Resultados: Os resultados indicam que a inclusão de BSFLM em dietas de aquacultura pode substituir até 100% do bagaço de soja em espécies como a carpa-relva juvenil (Ctenopharyngodon idellus) sem afetar significativamente o peso corporal final ou a taxa de crescimento específico (SGR) . Na tilápia (Oreochromis niloticus), a inclusão de 20% de BSFLM resultou num aumento significativo do ganho de peso diário, melhorando a biossíntese de ácidos gordos e aminoácidos. Para o camarão branco (Litopenaeus vannamei), uma inclusão de até 22,5% de BSFLM não teve impacto negativo na taxa de crescimento específica ou na eficiência alimentar. No salmão do Atlântico (Salmo salar), a inclusão de até 8% de BSFLM não afetou negativamente o crescimento ou o desempenho alimentar. Conclusão: O BSFLM pode substituir até 61,3% da farinha de peixe e 95,4% do óleo de peixe, utilizando menos recursos e reduzindo as emissões de gases com efeito de estufa em 1,2-2,7 kg por kg de ganho de peso vivo. No entanto, é essencial otimizar os níveis de inclusão para maximizar os benefícios sem comprometer a saúde dos peixes.

|Resumo
= 63 veces | PDF (ENGLISH)
= 25 veces|

Downloads

Não há dados estatísticos.

Biografia do Autor

David-Agapito Zambrano-Vera, Universidad Estatal Amazónica

Universidad Estatal Amazónica, Puyo, Ecuador

Martha-Cecilia Alcívar-Bazurto, Universidad Técnica de Manabí

Universidad Técnica de Manabí, Manabí, Ecuador

Susy-Natalia Gómez-Zurita, Universidad Estatal Amazónica

Universidad Estatal Amazónica, Puyo, Ecuador

Reni-Danilo Vinocunga-Pillajo, Universidad Estatal Amazónica

Universidad Estatal Amazónica, Puyo, Ecuador
Professor Industrial Engineering (Facultad de Ciencias de la Tierra)

Aida-Salomé Romero-Vistín, Gobierno Autónomo Descentralizado Parroquial Rural La Candelaria

Gobierno Autónomo Descentralizado Parroquial Rural La Candelaria

Carlos-Alfonso Sánchez-Vallejo, Escuela Superior Politécnica de Chimborazo

Escuela Superior Politécnica de Chimborazo, Chimborazo, Ecuador

Referências

Abdel-Tawwab M, Khalil RH, Metwally AA, Shakweer MS, Khallaf MA, Abdel-Latif H MR. Effects of black soldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, Dicentrarchus labrax. Aquaculture 2020; 522: 1-8. https://doi.org/10.1016/j.aquaculture.2020.735136

Ahmad C, Saima N, Durali D. Effect of Insect Feed on Fish Growth: A Review. Asian Fish Sci. 2024; 37(1): 52-68. https://doi.org/10.33997/j.afs.2024.37.1.004

Aragão C, Gonçalves AT, Costas B, Azeredo R, Xavier MJ, Engrola S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals 2022; 12(9):12111. https://doi.org/10.3390/ani12091211

Belghit I, Liland NS, Gjesdal P, Biancarosa I, Menchetti E, Li Y, Waagbø R, Krogdahl Å, Lock EJ. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 2019; 503: 609-619. https://doi.org/10.1016/j.aquaculture.2018.12.032

Berenbaum MR, Bush DS, Liao LH. Cytochrome P450-mediated mycotoxin metabolism by plant-feeding insects. Curr Opin Insect Sci. 2021; 43: 85-91. https://doi.org/10.1016/j.cois.2020.11.007

Bingqian N, Shah AA, Ullah S, Khan RU, Khan MS, Zaman A, Muhammad K. Exploring the Role of Insects as Sustainable Feed in Aquaculture Nutrition and Enhancing Antioxidant Capacity, Growth and Immune Response. Turk J Fish Aquat Sci. 2024; 24(5): 1-12. https://doi.org/10.4194/TRJFAS24581

Borgogno M, Dinnella C, Iaconisi V, Fusi R, Scarpaleggia C, Schiavone A, Monteleone E, Gasco L, Parisi G. Inclusion of Hermetia illucens larvae meal on rainbow trout (Oncorhynchus mykiss) feed: effect on sensory profile according to static and dynamic evaluations. J Sci Food Agric. 2017; 97(10): 3402-3411. https://doi.org/10.1002/jsfa.8191

Boyd CE, McNevin AA, Davis RP. The contribution of fisheries and aquaculture to the global protein supply. Food Sec. 2022; 14: 805-827. https://doi.org/10.1007/s12571-021-01246-9

Bruni L, Randazzo B, Cardinaletti G, Zarantoniello M, Mina F, Secci G, Tulli F, Olivotto I, Parisi G. Dietary inclusion of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss): Lipid metabolism and fillet quality investigations. Aquaculture 2020; 529: 735678. https://doi.org/10.1016/j.aquaculture.2020.735678

Chaix-Bar M, Ndambi A, Naser El Deen S, de Raad S, Mohammed E, Koomen I. Feasibility study: black soldier fly production for animal feed in Ethiopia. Wageningen: Stichting Wageningen Research Ethiopia, 2023. 34 p. Available in: https://doi.org/10.18174/637480

Chen Y, Chi S, Zhang S, Dong X, Yang Q, Liu H, Tan B, Xie S. Evaluation of the Dietary Black Soldier Fly Larvae Meal (Hermetia illucens) on Growth Performance, Intestinal Health, and Disease Resistance to Vibrio parahaemolyticus of the Pacific White Shrimp (Litopenaeus vannamei). Front Mar Sci. 2021; 8: 706463. https://doi.org/10.3389/fmars.2021.706463

Cheng AC, Shiu YL, Chiu ST, Ballantyne R, Liu CH. Effects of chitin from Daphnia similis and its derivative, chitosan on the immune response and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2021; 119: 329-338. https://doi.org/10.1016/j.fsi.2021.10.017

Cummins V, Rawles S, Thompson K, Velasquez A, Kobayashi Y, Hager J, Webster C. Evaluation of black soldier fly ( Hermetia illucens ) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp ( Litopenaeus vannamei). Aquaculture 2017; 473: 337-344. https://doi.org/10.1016/j.aquaculture.2017.02.022

Diener S, Studt Solano NM, Roa Gutiérrez F, Zurbrügg C, Tockner K. Biological Treatment of Municipal Organic Waste using Black Soldier Fly Larvae. Waste Biomass Valor. 2011; 2: 357-363. https://doi.org/10.1007/s12649-011-9079-1

Dumas A, Raggi T, Barkhouse J, Lewis E, Weltzien E. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture 2018; 492: 24-34. https://doi.org/10.1016/j.aquaculture.2018.03.038

Eide LH, Rocha SDC, Morales-Lange B, Kuiper RV, Dale OB, Djordjevic B, Hooft JM, Øverland M. Black soldier fly larvae (Hermetia illucens) meal is a viable protein source for Atlantic salmon (Salmo salar) during a large-scale controlled field trial under commercial-like conditions. Aquaculture 2024; 579: 1-23. https://doi.org/10.1016/j.aquaculture.2023.740194

Elia AC, Capucchio MT, Caldaroni B, Magara G, Dörr AJM, Biasato I, Biasibetti E, Righetti M, Pastorino P, Prearo M, Gai F, Schiavone A, Gasco L. Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture 2018; 496: 50-57. https://doi.org/10.1016/j.aquaculture.2018.07.009

Fisher HJ, Collins SA, Hanson C, Mason B, Colombo SM, Anderson DM. Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). Aquaculture 2020; 521: 734978. https://doi.org/10.1016/j.aquaculture.2020.734978

Gasco L, Henry M, Piccolo G, Marono S, Gai F, Renna M, Lussiana C, Antonopoulou, E, Mola P, Chatzifotis S. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim Feed Sci Technol. 2016; 220: 34-45. https://doi.org/10.1016/j.anifeedsci.2016.07.003

Glencross BD, Baily J, Berntssen MHG, Hardy R, MacKenzie S, Tocher DR. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev Aquac. 2020; 12(2): 703-758. https://doi.org/10.1111/raq.12347

Guzman-Pincheira C, Andrade-Cuvi MJ, Perez JCB, Araujo-Silva G, Quintero-Florez A. Is per capita fish consumption in Latin America aligned with international recommendations for a healthy diet?. Food Sci Tech. 2024; 44: e00171. https://doi.org/10.5327/fst.00171

Hardy RW. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac res. 2010; 41(5), 770-776. https://doi.org/10.1111/j.1365-2109.2009.02349.x

Henry M, Gasco L, Piccolo G, Fountoulaki E. Review on the use of insects in the diet of farmed fish: Past and future. Anim Feed Sci Techno. 2015; 203: 1-22. https://doi.org/10.1016/j.anifeedsci.2015.03.001

Hu Z, Li H, Liu S, Xue R, Sun J, Ji H. Assessment of black soldier fly (Hermetia illucens) larvae meal as a potential substitute for soybean meal on growth performance and flesh quality of grass carp Ctenopharyngodon idellus. Anim Nutri. 2023; 14: 425-449. https://doi.org/10.1016/j.aninu.2023.06.006

Kariuki MW, Barwani DK, Mwashi V, Kioko JK, Munguti JM, Tanga CM, Kiiru P, Gicheha MG, Osuga IM. Partial Replacement of Fishmeal with Black Soldier Fly Larvae Meal in Nile Tilapia Diets Improves Performance and Profitability in Earthen Pond. Sci Afr. 2024; 24: e02222. https://doi.org/10.1016/j.sciaf.2024.e02222

Kerton FM. UN Sustainable Development Goals 14 and 15 – Life below water, Life on land. RSC Sustain. 2023; 1(3): 401-409. https://doi.org/10.1039/d3su90010j

Knorr D, Augustin MA. Food systems restoration.

Sustain Food Technol. 2024; 2(5): 1365-1390. https://doi.org/10.1039/D4FB00108G

Krogdahl Å, Penn M, Thorsen J, Refstie S, Bakke AM. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac res. 2010; 41(3): 333-344. https://doi.org/10.1111/j.1365-2109.2009.02426.x

Lange KW, Nakamura Y. Potential contribution of edible insects to sustainable consumption and production. Front sustain. 2023; 4: 1-17. https://doi.org/10.3389/frsus.2023.1112950

Leeper A, Benhaïm D, Smárason B, Knobloch S, Ómarsson KL, Bonnafoux T, Pipan M, Koppe W, Bjornsdottir R, Øverland M. Feeding black soldier fly larvae (Hermetia illucens) reared on organic rest streams alters gut characteristics of Atlantic salmon (Salmo salar). J Insects Food Feed. 2022; 8(11): 1355-1372. https://doi.org/10.3920/JIFF2021.0105

Li S, Ji H, Zhang B, Zhou J, Yu H. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture 2017; 477: 62-70. https://doi.org/10.1016/j.aquaculture.2017.04.015

Limbu SM, Shoko AP, Ulotu EE, Luvanga SA, Munyi FM, John JO, Opiyo MA. Black soldier fly (Hermetia illucens, L.) larvae meal improves growth performance, feed efficiency and economic returns of Nile tilapia (Oreochromis niloticus, L.) fry. Aquac fish fish. 2022; 2(3): 167-178. https://doi.org/10.1002/aff2.48

Linh NV, Wannavijit S, Tayyamath K, Dinh-Hung N, Nititanarapee T, Sumon MA, Srinual O, Permpoonpattana P, Doan HV, Brown CL. Black Soldier Fly (Hermetia illucens) Larvae Meal: A Sustainable Alternative to Fish Meal Proven to Promote Growth and Immunity in Koi Carp (Cyprinus carpio var. koi). Fishes 2024; 9(2): 53. https://doi.org/10.3390/fishes9020053

Lu R, Chen Y, Yu W, Lin M, Yang G, Qin C, Meng X, Zhang Y, Ji H, Nie G. Defatted black soldier fly (Hermetia illucens) larvae meal can replace soybean meal in juvenile grass carp (Ctenopharyngodon idellus) diets. Aquac Rep. 2020; 18: 100520. https://doi.org/10.1016/j.aqrep.2020.100520

Luo Z, Tan XY, Liu XJ, Wen H. Effect of dietary betaine levels on growth performance and hepatic intermediary metabolism of GIFT strain of Nile tilapia Oreochromis niloticus reared in freshwater. Aquac Nutr. 2011; 17(4), 361-367. https://doi.org/10.1111/j.1365-2095.2010.00805.x

Macusi ED, Cayacay MA, Borazon EQ, Sales AC, Habib A, Fadli N, Santos MD. Protein Fishmeal Replacement in Aquaculture: A Systematic Review and Implications on Growth and Adoption Viability. Sustainability 2023; 15(16): 12500. https://doi.org/10.3390/su151612500

Magalhães R, Sánchez-López A, Leal RS, Martínez-Llorens S, Oliva-Teles A, Peres H. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 2017; 476: 79-85. https://doi.org/10.1016/j.aquaculture.2017.04.021

Moutinho S, Pedrosa R, Magalhães R, Oliva-Teles A, Parisi G, Peres H. Black soldier fly (Hermetia illucens) pre-pupae larvae meal in diets for European seabass (Dicentrarchus labrax) juveniles: Effects on liver oxidative status and fillet quality traits during shelf-life. Aquaculture 2021; 533: 1-35. https://doi.org/10.1016/j.aquaculture.2020.736080

Moutinho S, Oliva-Teles A, Fontinha F, Martins N, Monroig Ó, Peres H. Black soldier fly larvae meal as a potential modulator of immune, inflammatory, and antioxidant status in gilthead seabream juveniles. Comp Biochem Physiol B Biochem Mol Biol. 2024; 271: 110951. https://doi.org/10.1016/j.cbpb.2024.110951

Munthali M, Chilora L, Goliath M, Burke W, Benbow M, Kangʼombe J, Safalaoh A. The Economic Cost-benefit Analysis of Black Soldier Fly as an Alternative Animal and Fish Feed Ingredient in Malawi. AgEcon Search

; 32. https://doi.org/10.22004/ag.econ.338590

Nogales-Mérida S, Gobbi P, Józefiak D, Mazurkiewicz J, Dudek K, Rawski M, Kierończyk B, Józefiak A. Insect meals in fish nutrition. Rev Aquac. 2019; 11(4): 1080-1103. https://doi.org/10.1111/raq.12281

Novriadi R, Davies S, Triatmaja KIK, Hermawan M, Kontara EKM, Tanaka B, Rinaldy A, Nugroho JE. Black Soldier Fly (Hermetia illucens) as an Alternative to Marine Ingredients Elicits Superior Growth Performance and Resistance to Vibrio harveyi Infection for Pacific White Shrimp (Litopenaeus vannamei). Turk J Fish Aquat Sci. 2024;24(1):24343. https://doi.org/10.4194/TRJFAS24343

Nunes AJP, Yamamoto H, Simões JP, Pisa JL, Miyamoto N, Leite JS. The Black Soldier Fly (Hermetia illucens) Larvae Meal Can Cost-Effectively Replace Fish Meal in Practical Nursery Diets for Post-Larval Penaeus vannamei under High-Density Culture. Fishes. 2023;8(12):605. https://doi.org/10.3390/fishes8120605

Odhiambo FA, Manyala J, Ndong’AM, Museve E, Otieno HMO. Effect of Black Soldier Fly (Hermetia illucens) Larvae Feed Supplement on Length-Weight Relationship of Nile Tilapia (Oreochromis niloticus). Innovations in Agriculture. 2023;6:1-5. https://doi.org/10.25081/ia.2023-026

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:71. https://doi.org/10.1136/bmj.n71

Pulido-Rodriguez LF, Bruni L, Secci G, Moutinho S, Peres H, Petochi T, Marino G, Tibaldi E, Parisi G. Growth, Hepatic Enzymatic Activity, and Quality of European Seabass Fed on Hermetia illucens and Poultry By-Product Meal in a Commercial Farm. Animals. 2024;14(10):1449. https://doi.org/10.3390/ani14101449

Radhakrishnan G, Liland NS, Koch MW, Lock EJ, Philip AJP, Belghit I. Evaluation of black soldier fly larvae meal as a functional feed ingredient in Atlantic salmon (Salmo salar) under farm-like conditions. Frontiers in Aquaculture. 2023;2:1239402. https://doi.org/10.3389/faquc.2023.1239402

Rawski M, Mazurkiewicz J, Kierończyk B, Józefiak D. Black Soldier Fly Full-Fat Larvae Meal Is More Profitable Than Fish Meal and Fish Oil in Siberian Sturgeon Farming: The Effects on Aquaculture Sustainability, Economy and Fish GIT Development. Animals. 2021;11(3):604. https://doi.org/10.3390/ani11030604

Renna M, Schiavone A, Gai F, Dabbou S, Lussiana C, Malfatto V, Prearo M, Capucchio MT, Biasato I, Biasibetti E, De Marco M, Brugiapaglia A, Zoccarato I, Gasco L. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. Anim Sci Biotechnol. 2017;8(1):57. https://doi.org/10.1186/s40104-017-0191-3

Roccatello R, Endrizzi I, Aprea E, Dabbou S. Insect-based feed in aquaculture: A consumer attitudes study. Aquaculture. 2024;582:740512. https://doi.org/10.1016/j.aquaculture.2023.740512

Rocha CP, Cabral HN, Marques JC, Gonçalves AMM. A Global Overview of Aquaculture Food Production with a Focus on the Activity’s Development in Transitional Systems—The Case Study of a South European Country (Portugal). J Mar Sci Eng. 2022;10(3):417. https://doi.org/10.3390/jmse10030417

Rogers AJ. Aquaculture in the Ancient World: Ecosystem Engineering, Domesticated Landscapes, and the First Blue Revolution. J Archaeol Res. 2023;32:427-491. https://doi.org/10.1007/s10814-023-09191-1

Sørensen SL, Park Y, Gong Y, Vasanth GK, Dahle D, Korsnes K, Phuong TH, Kiron V, Øyen S, Pittman K, Sørensen M. Nutrient Digestibility, Growth, Mucosal Barrier Status, and Activity of Leucocytes From Head Kidney of Atlantic Salmon Fed Marine- or Plant-Derived Protein and Lipid Sources. Front Immunol. 2020;11:623726. https://doi.org/10.3389/fimmu.2020.623726

Sumbule EK, Ambula MK, Osuga IM, Changeh JG, Mwangi DM, Subramanian S, Salifu D, Alaru PAO, Githinji M, van Loon JJA, Dicke M, Tanga CM. Cost-Effectiveness of Black Soldier Fly Larvae Meal as Substitute of Fishmeal in Diets for Layer Chicks and Growers. Sustainability. 2021;13(11):6074. https://doi.org/10.3390/su13116074

Suryati T, Julaeha E, Farabi K, Ambarsari H, Hidayat AT. Lauric Acid from the Black Soldier Fly (Hermetia illucens) and Its Potential Applications. Sustainability. 2023;15(13):10383. https://doi.org/10.3390/su151310383

Tacon AGJ, Metian M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture. 2008;285(1-4):146-158. https://doi.org/10.1016/j.aquaculture.2008.08.015

Tippayadara N, Dawood MAO, Krutmuang P, Hoseinifar SH, Doan HV, Paolucci M. Replacement of Fish Meal by Black Soldier Fly (Hermetia illucens) Larvae Meal: Effects on Growth, Haematology, and Skin Mucus Immunity of Nile Tilapia, Oreochromis niloticus. Animals. 2021;11(1):193. https://doi.org/10.3390/ani11010193

Usman U, Fahrur M, Kamaruddin K, Asaad A, Fahmi M. The utilization of black soldier fly larvae meal as a substitution of fish meal in diet for white shrimp, Litopenaeus vannamei, grow-out. IOP Conf Ser Earth Environ Sci. 2021;860:012023. https://doi.org/10.1088/1755-1315/860/1/012023

Van Der Fels-Klerx HJ, Camenzuli L, Belluco S, Meijer N, Ricci A. Food Safety Issues Related to Uses of Insects for Feeds and Foods. Compr Rev Food Sci Food Saf. 2018;17(5):1172-1183. https://doi.org/10.1111/1541-4337.12385

Verma N, Talwar P, Upadhyay A, Singh R, Lindenberger C, Pareek N, Sarangi PK, Zorpas AA, Vivekanand V. Food-Energy-Water Nexus in compliance with Sustainable Development Goals for integrating and managing the core environmental verticals for sustainable energy and circular economy. Sci Total Environ. 2024;930:172649. https://doi.org/10.1016/j.scitotenv.2024.172649

Wang G, Peng K, Hu J, Yi C, Chen X, Wu H, Huang Y. Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets. Aquaculture 2019;507:144-154. https://doi.org/10.1016/j.aquaculture.2019.04.023

Wang G, Peng K, Hu J, Mo W, Wei Z, Huang Y. Evaluation of defatted Hermetia illucens larvae meal for Litopenaeus vannamei: effects on growth performance, nutrition retention, antioxidant and immune response, digestive enzyme activity and hepatic morphology. Aquac Nutr. 2021;27(4):986-997. https://doi.org/10.1111/anu.13240

Ye B, Li J, Xu L, Liu H, Yang M. Metabolomic Effects of the Dietary Inclusion of Hermetia illucens Larva Meal in Tilapia. Metabolites 2022;12(4):286. https://doi.org/10.3390/metabo12040286

Zarantoniello M, de Oliveira AA, Sahin T, Freddi L, Torregiani M, Tucciarone I, Chemello G, Cardinaletti G, Gatto E, Parisi G, Bertolucci C, Riolo P, Nartea A, Gioacchini G, Olivotto I. Enhancing Rearing of European Seabass (Dicentrarchus labrax) in Aquaponic Systems: Investigating the Effects of Enriched Black Soldier Fly (Hermetia illucens) Prepupae Meal on Fish Welfare and Quality Traits. Animals 2023;13(12):1921. https://doi.org/10.3390/ani13121921

Downloads

Publicado

2025-09-10

Como Citar

Zambrano-Vera, D.-A., Alcívar-Bazurto, M.-C., Gómez-Zurita, S.-N., Vinocunga-Pillajo, R.-D., Romero-Vistín, A.-S., & Sánchez-Vallejo, C.-A. (2025). Avaliação do efeito da refeição de larvas de mosca do soldado negro no crescimento de espécies aquáticas: Uma revisão da literatura. Revista Colombiana De Ciencias Pecuarias. https://doi.org/10.17533/udea.rccp.e358626

Edição

Seção

Manuscritos aceitos