Perfiles de resistencia antibiotica de Escherichia coli no patógena en granjas porcinas de Colombia
DOI:
https://doi.org/10.17533/udea.rccp.v38n2a4Palabras clave:
Antibióticos, capacidad hemolítica, Escherichia coli, genes de resistencia, lechones, patógeno, resistencia a antibióticos, salud públicaResumen
Antecedentes: La resistencia a los antibióticos es un problema de salud pública mundial. Hasta el momento, existen estudios limitados centrados en Escherichia coli aislada de hatos porcinos en Colombia. Objetivo: El objetivo de este trabajo fue evaluar la resistencia a antibióticos de cepas no patógenas de E. coli aisladas de granjas porcinas del Valle del Cauca, Colombia. Métodos: Se usaron 6 cepas de E. coli no patógenas aisladas de estudios previos. Se evaluó la capacidad hemolítica de las cepas y la presencia de toxinas termolábiles (LT) y termoestables (STa y STb) mediante la observación de bandas de amplificación de genes de interés con tamaño esperado de STa: 163 bp, STb: 368 bp, and LT: 275 bp. Finalmente, se evaluó la capacidad de resistencia de las cepas a 11 antibióticos de uso común en cepas γ - hemolíticas. Resultados: Las cepas presentaron multiresistencia a antibióticos. La mayor prevalencia de resistencia fue contra Amikacina (20%), Ceftiofur (20%), Fosfomicina (20%), Ciprofloxacina (40%), Gentamicina (40%), Florfenicol (80%), Enrofloxacina Baytril (80%), Norfloxacina (80%), Apramicina (100%), Ampicilina (100%) y Doxiciclina (100%). Conclusiones: Las cepas comensales de E. coli aisladas de lechones representan un alto riesgo de diseminación de genes de resistencia en la cadena productiva porcina, y pueden ingresar a la cadena alimentaria y transferirse a humanos generando resistencia a antibióticos. Por lo tanto, esta información es de alta relevancia para la implementación de estrategias de control y prevención de la resistencia antimicrobiana en la industria porcina y la protección de la salud pública.
Descargas
Citas
Alonso C, Zarazaga M, Ben Sallem R, Jouini A, Ben Slama K, Torres C. Antibiotic resistance in Escherichia coli in husbandry animals: the African perspective. Letters in Applied Microbiology 2017; 64(5): 318–334. https://doi.org/10.1111/lam.12724
Anderson JD, Bagamian KH, Muhib F, Amaya MP, Laytner LA, Wierzba T, Rheingans R. Burden of enterotoxigenic Escherichia coli and Shigella non-fatal diarrhoeal infections in 79 low-income and lower middle-income countries: a modelling analysis. The Lancet Global Health 2019, 7(3): e321-e330. https://doi.org/10.1016/S2214-109X(18)30483-2
Arenas NE, & Melo V. Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática. Infectio 2018; 22(2): 110–119. https://doi.org/10.22354/in.v22i2.717
Begum Y, Talukder K, Azmi I, Shahnaij M, Sheikh A, Sharmin S, Svennerholm AM, Qadri F. Resistance pattern and molecular characterization of enterotoxigenic Escherichia coli (ETEC) strains isolated in Bangladesh. PLOS ONE 2016; 11(7): 1–11. https://doi.org/10.1371/journal.pone.0157415
Daneman N, Fridman D, Johnstone J, Langford BJ, Lee SM, MacFadden DM, Mponponsuo K, Patel SN, Schwartz KL, Brown KA. Antimicrobial resistance and mortality following E. coli bacteremia. EClinicalMedicine 2023, 56:101781. https://doi.org/10.1016/j.eclinm.2022.101781
Garcias B, Martin M, Darwich L. Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Diarrheic and Healthy Weaned Pigs in Catalonia. Animals 2024, 14(3): 487. https://doi.org/10.3390/ani14030487
Henrique P, Nunes S, Valiatti TB, Carolina A, Santos DM, Nascimento S, Santos-Neto JF, Rocchetti TT, Cecilia M, Yu Z, Hofling-Lima AL, Tardelli A. Evaluation of the pathogenic potential of Escherichia coli strains isolated from eye infections. Microorganisms 2022, 10(1084): 1–16. https://doi.org/10.3390/microorganisms10061084
Jang J, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S. (2017). Environmental Escherichia coli: ecology and public health implications—a review. Journal of Applied Microbiology 2017, 123(3): 570–581. https://doi.org/10.1111/jam.13468
Kaleva MD, Ilieva Y, Zaharieva MM, Dimitrova L, Kim TC, Tsvetkova I, Georgiev Y, Orozova P, Nedev K, Najdenski H. Antimicrobial resistance and biofilm formation of Escherichia coli isolated from pig farms and surroundings in Bulgaria. Microorganisms 2023, 11(8): 1909. https://doi.org/10.3390/microorganisms11081909
Loayza F, Graham JP, Trueba G. Factors obscuring the role of E. coli from domestic animals in the global antimicrobial resistance crisis: an evidence-based review. International Journal of Environmental Research and Public Health 2020, 17(9): 3061. https://doi.org/10.3390/ijerph17093061
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection 2012, 18(3): 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Mantilla MJ, Torres RG. Enfoque metagenómico para la caracterización del microbioma de aves corral. Revisión. Revista Colombiana de Biotecnología 2019, 21(2): 77–97. https://doi.org/10.15446/rev.colomb.biote.v21n2.78390
Mantilla JF, Villar D, Gómez-Beltrán DA, Vidal JL, Chaparro-Gutiérrez, JJ. High antimicrobial resistance in Salmonella spp. and Escherichia coli isolates from swine fecal samples submitted to a veterinary diagnostic laboratory in Colombia. Revista Colombiana de Ciencias Pecuarias 2022, 35(1): 26–35. https://doi.org/10.17533/udea.rccp.v35n1a03
Mcarthur DB. Emerging Infectious Diseases. Nurs Clin N Am 2019, 54(2): 297–311. https://doi.org/10.1016/j.cnur.2019.02.006
Mendoza JG, Vargas CM, Ponce FM. Resistance to antibacterial agents: A serious problem. Acta Med Peru 2019, 36(2): 145–151.
Monger XC, Gilbert AA, Saucier L, Vincent AT. Antibiotic resistance: from pig to meat. Antibiotics 2021, 10(10): 1–20. https://doi.org/10.3390/antibiotics10101209
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, ... & Tasak N. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 2022, 399(10325): 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0
Nowaczek A, Dec M, Stępień-Pyśniak D, Urban-Chmiel R, Marek A, Różański P. Antibiotic resistance and virulence profiles of Escherichia coli strains isolated from wild birds in poland. Pathogens 2021, 10(8): 1–14. https://doi.org/10.3390/pathogens10081059
O’Neill L, Manzanilla EG, Ekhlas D, Leonard FC. Antimicrobial Resistance in Commensal Escherichia coli of the Porcine Gastrointestinal Tract. Antibiotics 2023, 12(11): 1–30. https://doi.org/10.3390/antibiotics12111616
Pabón-Rodríguez OV, López-López K, Casas-Bedoya GA, Mogollón-Galvis JD, and Serna-Cock L. Adhesion factors and antimicrobial resistance of Escherichia coli strains associated with colibacillosis in piglets in Colombia, Veterinary World 2023, 16(6): 1231–1237. www.doi.org/10.14202/vetworld.2023
Pérez DQ. Antimicrobial resistance: Evolution and current perspectives in the context of the “one health” approach. Revista Cubana de Medicina Tropical 2017, 69(3): 1–17.
Pitout JD. Extraintestinal pathogenic Escherichia coli: A combination of virulence with antibiotic resistance. Frontiers in Microbiology 2012, 3(9): 1–7. https://doi.org/10.3389/fmicb.2012.00009
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology 2018, 4(3): 482–501. https://doi.org/10.3934/microbiol.2018.3.482
Rodríguez RE, Bolívar-Anillo H, Turcios CH, Garcia LC, Hernández MS, Abdellah E. Antibiotic resistance: the role of man, animals and the environment. Salud Uninorte 2020, 36(1): 298–324. https://doi.org/10.14482/sun.36.1.615
Roth N, Käsbohrer, A, Mayrhofer S, Zitz U, Hofacre C, Domig KJ. (2019). The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poultry Science 2019, 98(4): 1791–1804. https://doi.org/10.3382/ps/pey539
Sánchez-Neira Y, Angarita-Merchán, M. Determinación de hemólisis en cepas de Staphylococcus spp causantes de mastitis bovina. Revista Investigación en Salud Universidad de Boyacá 2018, 5(1): 15–30. https://doi.org/10.24267/23897325.266
Sarowska J, Koloch BF, Kmiecik AJ, Madrzak MF, Ksiazczyk M, Ploskonska GB, Krol IC. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources : recent reports. Gut Pathogens 2019, 11(10): 1–16. https://doi.org/10.1186/s13099-019-0290-0
Singh NS, Singhal N, Kumar M, Virdi JS. Public health implications of plasmid-mediated quinolone and aminoglycoside resistance genes in Escherichia coli inhabiting a major anthropogenic river of India. Epidemiology and Infection 2022, 150(e78): 1-8. https://doi.org/10.1017/S095026882200053X
Suzuki Y, Hiroki H, Xie H, Nishiyama M, Sakamoto SH, Uemura R, Nukazawa K, Ogura Y, Watanabe T, Kobayashi, I. Antibiotic-resistant Escherichia coli isolated from dairy cows and their surrounding environment on a livestock farm practicing prudent antimicrobial use. International Journal of Hygiene and Environmental Health 2022, 240: 1-7 https://doi.org/10.1016/j.ijheh.2022.113930
Terahara F, Nishiura H. Fluoroquinolone consumption and Escherichia coli resistance in Japan : an ecological study. BMC Public Health 2019, 19(426): 1–8. https://doi.org/10.1186/s12889-019-6804-3
Torres-León C, de Azevedo B, dos Santos MT, Carneiro-da-Cunha MG, Ramirez-Guzman N, Alves LC, Brayner FA, Ascacio-Valdes J, Álvarez-Pérez OB, Aguilar CN. Antioxidant and anti-staphylococcal activity of polyphenolic-rich extracts from Ataulfo mango seed. LWT-Food Science and Technology 2021, 148(111653): 1-10. https://doi.org/10.1016/j.lwt.2021.111653
Torres-León C, Sepulveda L, Aguilar CN. Food and diseases: what to know in the fight to ensure food safety. Quantitative methods and analytical techniques in food microbiology. Apple Academic Press Inc 2022. (First, pp. 57–75). http://dx.doi.org/10.1201/9781003277453-5
Valencia-Hernández LJ, López-López K, Serna-Cock L. Weissella cibaria fungistatic activity against Fusarium spp. Affecting yellow pitahaya. American Journal of Applied Sciences 2016, 13(12): 1354–1364. https://doi.org/10.3844/ajassp.2016.1354.1364
Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America 2015, 112(18): 5649–5654. https://doi.org/10.1073/pnas.1503141112
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista Colombiana de Ciencias Pecuarias
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores permiten a RCCP reimprimir el material publicado en él.
La revista permite que los autores tengan los derechos de autor sin restricciones, y permitirá que los autores conserven los derechos de publicación sin restricciones.