Sustainable utilization of agro-industrial fruit and vegetable waste in industry: potential to produce bioactives and biomaterials

Aprovechamiento sostenible de residuos agroindustriales de frutas y vegetales en la industria: potencial para producir bioactivos y biomateriales

Authors

DOI:

https://doi.org/10.17533/udea.rccp.e359059

Keywords:

agro-industrial waste, bioactive, compounds, fermentation, supercritical fluid extraction

Abstract

Sustainable utilization of agro-industrial waste has been established as a key strategy for addressing environmental and economic challenges. This study focused on identifying how agro-industrial waste from fruits and vegetables is utilized globally. To achieve this, the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method was employed, which facilitates the conduct of systematic reviews and meta-analyses. This approach allows for a comprehensive and structured literature search, ensuring transparency and reproducibility in the review process. The study's results revealed that 29.9% of the waste is optimized through fermentation processes, while 16% is utilized via supercritical fluid extraction (SFE). These findings conclude that sustainable utilization of agro-industrial waste, through innovative methods such as fermentation and supercritical fluid extraction, provides effective solutions to environmental and economic challenges. These methods not only enable the conversion of waste into high-value products but also contribute to waste reduction and the promotion of a circular economy, aligning with global goals of waste reduction and resource optimization.

|Abstract
= 170 veces | PDF
= 53 veces|

Downloads

Download data is not yet available.

Author Biographies

Miguel Enriquez-Estrella, Amazon State University

Amazon State University, Faculty of Earth Sciences, School of Agroindustry; Puyo - Ecuador

Luis Arboleda-Alvarez, Higher Polytechnic School of Chimborazo

Higher Polytechnic School of Chimborazo, Faculty of Animal Sciences, School of Agroindustrial Engineering

Paul Ricaurte-Órtiz, National University of Chimborazo

National University of Chimborazo, Faculty of Engineering, School of Agroindustrial Engineering

Ahmed El Salous, Agrarian University of Ecuador

Agrarian University of Ecuador, Graduate Department

Maria- José Andrade-Alban, Higher Polytechnic School of Chimborazo

Higher Polytechnic School of Chimborazo, Faculty of Animal Sciences, School of Agroindustrial Engineering

References

Abdallah HB, Abassi A, Trabelsi A, Krichen Y, Chekir-Ghedira L, Kamel G. Optimization of ultrasound-assisted extraction of polyphenols and flavonoids from Citrus aurantium L. var. amara Engl. fruit peel using response surface methodology. Biomass Conv Bioref. 2024; 14: 14139–14151. https://doi.org/10.1007/s13399-023-03947-x

Agnihotri S, Yin DM, Mahboubi A, Sapmaz T, Varjani S, Qiao W, Koseoglu-Imer DY, Taherzadeh MJ. A glimpse of the world of volatile fatty acids production and application: A review. Bioengineered 2022; 13(1): 1249–1275. https://doi.org/10.1080/21655979.2021.1996044

Aguiar S, Enríquez EM, Cabadiana U. Residuos agroindustriales: su impacto, manejo y aprovechamiento. AXIOMA 2022; 1(27): 5-11. https://doi.org/10.26621/ra.v1i27.803

Aqilah, NMN, Rovina K, Felicia WXL, Vonnie JM. A review on the potential bioactive components in fruits and vegetable wastes as value-added products in the food industry. Molecules 2023; 28(6): 2631. https://doi.org/10.3390/molecules28062631

Arrázola G, Buelvas H, Arrieta Y. Aprovechamiento de las características nutricionales del almendro de la India (Terminalia catappa L.) como suplemento en la alimentación animal. Rev MVZ Cordoba. 2008;13(1): 1205–1214. https://doi.org/10.21897/rmvz.412

Bustos, OFG. Implementación de una plataforma analítica HPTLC-bioensayo-MS de efecto dirigido para la identificación de compuestos bioactivos en chirimoya (Annona cherimola Mill.).[Tesis doctoral]. Concepción, Chile: Universidad de Concepción; 2019.p.134.

Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. Lignocellulolytic enzymes in biotechnological and industrial processes: a review. Sustainability 2020; 12(18): 7282. https://doi.org/10.3390/su12187282

Das S, Lee SH, Kumar P, Kim KH, Lee SS, Bhattacharya SS. Solid waste management: Scope and the challenge of sustainability. J Clean Prod. 2019; 228: 658-678. https://doi.org/10.1016/j.jclepro.2019.04.323

Da Silva, RPFF, Rocha-Santos, TAp, Duarte AC. Supercritical fluid extraction of bioactive compounds. Trends Analyt Chem. 2016; 76: 40-51. https://doi.org/10.1016/j.trac.2015.11.013

Diaconeasa, Z., Iuhas, C. I., Ayvaz, H., Mortas, M., Farcaş, A., Mihai, M., ... & Stanilă, A. (2022). Anthocyanins from agro-industrial food waste: geographical approach and methods of recovery—a review. Plants, 12(1), 74. https://doi.org/10.3390/plants12010074

Enríquez EMA, Ojeda GL. Evaluación bromatológica de dietas alimenticias, con la inclusión de harina de plátano de rechazo. Revista Espamciencia 2020; 11(1): 12-18. https://doi.org/10.51260/revista_espamciencia.v11i1.200

Enríquez-Estrella, M. Á., Poveda-Díaz, S. E., & Alvarado-Huatatoca, G. I. (2023). Bioactivos de la hierba luisa utilizados en la industria. Revista mexicana de ciencias agrícolas, 14(1), 1-11. https://doi.org/10.29312/remexca.v14i1.3249

Galanakis CM. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci Technol. 2012; 26(2): 68-87. https://doi.org/10.1016/j.tifs.2012.03.003

García-Casal MN, Landaeta M, Adrianza de Baptista G, Murillo C, Rincón M, Bou Rached L, Bilbao A, Anderson H, García D, Franquiz J, Puche R, García O, Quintero Y, Peña-Rosas JP. Valores de referencia de hierro, yodo, zinc, selenio, cobre, molibdeno, vitamina C, vitamina E, vitamina K, carotenoides y polifenoles para la población venezolana. Arch Latinoam Nutr. 2013; 63(4): 338–361. https://doi.org/10.37527/2023.63.4.10

Guo, L., Li, X., Tian, X., Sun, J., Wang, X., & Qin, N. (2023). Optimization of extraction technology of total saponins from stems and leaves of Astragalus membranaceus by response surface methodology and their antioxidant activity. China Food Additives, 34(4). https://doi.org/10.19804/j.issn1006-2513.2023.04.019

Haque F, Fan C, Lee YY. From waste to value: Addressing the relevance of waste recovery to agricultural sector in line with circular economy. J Clean Prod. 2023; 415: 137873. https://doi.org/10.1016/j.jclepro.2023.137873

Huaman L, Vásquez H, Oliva M. Fertilizantes orgánicos en la producción de pastos nativos en Molinopampa, Amazonas-Perú. Rev investig agroproducción sustentable. 2018; 2(3): 17–22. https://doi.org/10.25127/aps.20183.399

Kainat S, Arshad MS, Khalid W, Khalid MZ, Koraqi H, Afzal MF, Noreen S, Aziz Z, Al-Farga A. Sustainable novel extraction of bioactive compounds from fruits and vegetables waste for functional foods: a review. Int J Food Prop. 2022; 25(1): 2457-2476. https://doi.org/10.1080/10942912.2022.2144884

Krzyżostan M, Wawrzyńczak A, Nowak I. Use of Waste from the Food Industry and Applications of the Fermentation Process to Create Sustainable Cosmetic Products: A Review. Sustainability 2024; 16(7): 2757. https://doi.org/10.3390/su16072757

Llanes FD. Efecto del extracto enzimático de Bacillus subtilis E44 sobre una dieta para pollitas de reemplazo de gallinas ponedoras. [Doctoral thesis].Cuba, Matanzas: Universidad de Matanzas, Facultad de Ciencias Agropecuarias; 2018.

López-Almada G, Domínguez-Ávila JA, Mejía-León ME, Robles-Sánchez M, González-Aguilar GA, Salazar-López NJ. Could naringenin participate as a regulator of obesity and satiety? Molecules 2023; 28(3): 1450. https://doi.org/10.3390/molecules28031450

Martínez-Hernández, J. L., Arredondo-Valdes, R., Palacios-Ponce, S., Nava-Reyna, E., Sandoval-Cortés, J., & Aguilar, C. N. (2024). Enzymatic hydrolysis: A sustainable approach for Agave waste–based ethanol production and its advancement. In M. González, D. Verma, J. Figueroa, & C. Aguilar (Eds.), Enzymatic processes for food valorization (pp. 245–262). Academic Press. https://doi.org/10.1016/B978-0-323-95996-4.00015-0

Mirabella N, Castellani V, Sala S. Current options for the valorization of food manufacturing waste: a review. J Clean Prod. 2014; 65: 28-41. https://doi.org/10.1016/j.jclepro.2013.10.051

Rosen MA. Engineering sustainability: A technical approach to sustainability. Sustainability 2012; 4(9): 2270-2292. https://doi.org/10.3390/su4092270

Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf. 2018; 17(3): 512-531. https://doi.org/10.1111/1541-4337.12330

Villegas Castañeda M. Estudio del cultivo sólido de paja de sorgo en la producción de enzimas fibrolíticas y digestibilidad ruminal in vitro con Fomes fomentarius EUM1 y Pleurotus sapidus. [master's thesis]. México: Colegio de postgraduados; 2010. p.1-98 http://colposdigital.colpos.mx:8080/jspui/handle/10521/103

Zamora Vargas TI. Potencial energético y ambiental de la producción de bioetanol a partir de residuos agrícolas lignocelulósicos en el valle Jequetepeque. [Undergraduate thesis]. Perú, Trujillo: Universidad Nacional de Trujillo; 2019. P.1-35. https://dspace.unitru.edu.pe/items/f56a05ac-d517-4f93-9f53-e4f034e3109b

Zubairi SI, Mantalaris A, Bismarck A, Aizad S. Polyhydroxyalkanoates (PHAs) for tissue engineering applications: Biotransformation of palm oil mill effluent (POME) to value-added polymers. J Teknol. 2016; 78(1). https://doi.org/10.11113/jt.v78.4042

Downloads

Published

2025-09-03

How to Cite

Enriquez-Estrella, M., Arboleda-Alvarez, L., Ricaurte-Órtiz, P., El Salous, A., & Andrade-Alban, M.-. J. (2025). Sustainable utilization of agro-industrial fruit and vegetable waste in industry: potential to produce bioactives and biomaterials: Aprovechamiento sostenible de residuos agroindustriales de frutas y vegetales en la industria: potencial para producir bioactivos y biomateriales. Revista Colombiana De Ciencias Pecuarias. https://doi.org/10.17533/udea.rccp.e359059

Issue

Section

Accepted Manuscripts