Evaluation of serum florfenicol concentrations and PK/PD ratios in pigs following In-Feed administration at four dose levels

Authors

DOI:

https://doi.org/10.17533/udea.rccp.e360197

Keywords:

dose level, feed, florfenicol, pharmacokinetics and pharmacodynamics (PK/PD), pigs

Abstract

Background: Florfenicol treatment is often necessary in intensive swine clinics, and appropriate dosing should be followed. However, the pioneer manufacturer's original registration stated that the dose could be set at 40 ppm as in feed medication. Other generic brands have established other doses (80, 100, and 200 ppm). Objective: This trial aimed to assess the PK/PD rationale of the referred doses, and determine the serum concentrations of florfenicol achieved in pigs after dosing them in feed and ad libitum with florfenicol at four different dose levels: 40, 80, 100, and 200 ppm. Then, the pharmacokinetics/pharmacodynamics ratios are established. Methods: Through HPLC, serum concentrations of florfenicol achieved in Landrace/Duroc spayed pigs weighing approximately 10 kg were determined. Medicated feed was administered ad libitum. The selected in feed concentrations were 40, 80, 100, and 200 ppm. Considering the farm-established feed intake of 4% of their body weight, doses achieved were: 1.6, 3.2, 4, and 8 mg/kg, respectively. Only florfenicol was determined through a chromatographic method. Monte Carlo simulations were carried out. Results: As expected, there are significant differences when comparing the mean serum concentrations of florfenicol achieved with each dosage level of the antibacterial drug. Since florfenicol is considered a time-dependent antibacterial and, as established in the literature, is only 15% bound to plasma protein in pigs, Monte Carlo simulations were based on 85% of the serum concentrations reached with each dose. Based on the available literature, target attainment was set either at MIC0.4 µg/mL or MIC2.0 µg/mL, and %T to reach those values within the dosing interval (DI) was set at 100%, i.e., 24 h. The 40-ppm dose only achieves 14 h of useful concentrations (%T ≥ MIC0.4 µg/mL = 58% of the DI). The 100 to 200 ppm doses achieved %T ≥ MIC0.4 µg/mL = 100% of the DI. The %T reaching MIC2.0 µg/mL was only possible with 200 ppm, achieving 95% of the DI, while the 100 ppm dose achieved only 70.8% of the DI. As metaphylactic treatment is often necessary in intensive swine farms, and florfenicol should only be administered when a given pathology has been proven, the 40-ppm dose resulted unsuitable, while 100 and 200 ppm appear to be acceptable, and the 80 ppm marginally acceptable for susceptible pathogens.

|Abstract
= 37 veces | PDF
= 19 veces|

Downloads

Download data is not yet available.

Author Biographies

Lilia Gutiérrez, Universidad Nacional Autónoma de México

National Autonomous University of Mexico, Faculty of Veterinary Medicine and Animal Husbandry, Department of Physiology and Pharmacology, Mexico City 04510, Mexico

Graciela Tapia-Pérez, Universidad Nacional Autónoma de México

National Autonomous University of Mexico, Faculty of Veterinary Medicine and Animal Husbandry, Department of Genetics and Biostatistics, Mexico City 04510, Mexico

Pablo González, Swine Producer and Consultant/Veterinarian

Swine Producer and Consultant/Veterinarian at San José de Gracia, Michoacán, México, Mexico

José Fajardo-Vargas, PiSA Agropecuaria

PiSA Agropecuaria, Technical Department, Guadalajara, Mexico

Minerva Monroy-Barreto, Universidad Nacional Autónoma de México

National Autonomous University of Mexico, Faculty of Chemistry, Department of Analytical Chemistry, Mexico City 04510, Mexico

Héctor Sumano, Universidad Nacional Autónoma de México

National Autonomous University of Mexico, Faculty of Veterinary Medicine and Animal Husbandry, Department of Physiology and Pharmacology, Mexico City 04510, Mexico

References

Blondeau JM, Fitch SD. Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis. PLoS One. 2019; 14(1): e0210154. https://doi.org/10.1371/journal.pone.0210154

Ciprián A, Palacios JM, Quintanar D, Batista L, Colmenares G, Cruz T, Romero A, Schnitzlein W, Mendoza S. Florfenicol feed supplementation decreases the clinical effects of Mycoplasma hyopneumoniae experimental infection in swine in Mexico. Res Vet Sci. 2012; 92(2): 191–196. https://doi.org/10.1016/j.rvsc.2011.01.010

Code of Federal Regulations. Title 21 – PART 558 — NEW ANIMAL DRUGS FOR USE IN ANIMAL FEEDS – Florfenicol. CFR 558.261. https://www.ecfr.gov/current/title-21

Cutler R, Gleeson B, Page S, Norris J, Browning G. Antimicrobial prescribing guidelines for pigs. Aust Vet J. 2020; 98(4):105–134. https://doi.org/10.1111/avj.12940

Dorey L, Hobson S, Lees P. Activity of florfenicol for Actinobacillus pleuropneumoniae and Pasteurella multocida using standardised versus non-standardised methodology. Vet J. 2016; 218: 65–70. https://doi.org/10.1016/j.tvjl.2016.11.004

Elías-Alejandrí B. Evaluación de la influencia de la palatabilidad en el consumo de agua medicada con tres preparados de florfenicol en cerdos destetados y sus repercusiones terapéuticas [Master’s thesis]. México: Universidad Nacional Autónoma de México; 2010. https://repositorio.unam.mx/contenidos/63140

Gutiérrez L, Vargas D, Ocampo L, Sumano H, Martínez R, Tapia G. Plasma concentrations resulting from florfenicol preparations given to pigs in their drinking water. J Anim Sci. 2011; 89(9): 2926–2931. https://doi.org/10.2527/jas.2010-3576

Halleran J, Sylvester H, Jacob M, Callahan B, Baynes R, Foster D. Impact of florfenicol dosing regimen on the phenotypic and genotypic resistance of enteric bacteria in steers. Sci Rep. 2024; 14: 4920. https://doi.org/10.1038/s41598-024-55591-8

Jianzhong L, Ki-Fai F, Zhangliu C, Zhenling Z, Jie Z. Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with Actinobacillus pleuropneumoniae. Antimicrob Agents Chemother. 2003; 47(2): 820–823. https://doi.org/10.1128/AAC.47.2.820-823.2003

Kowalski P, Konieczna L, Chmielewska A, Oledzka I, Plenis A, Bieniecki M, Lamparczyk H. Comparative evaluation between capillary electrophoresis and high-performance liquid chromatography for the analysis of florfenicol in plasma. J Pharm Biomed Anal. 2005; 39(4): 983–989. https://doi.org/10.1016/j.jpba.2005.05.032

Kucerova Z, Hradecka H, Nechvatalova K, Nedbalcova K. Antimicrobial susceptibility of Actinobacillus pleuropneumoniae isolates from clinical outbreaks of porcine respiratory diseases. Vet Microbiol. 2011; 150(1–2): 203–206. https://doi.org/10.1016/j.vetmic.2011.01.016

Lei Z, Liu Q, Yang S, Yang B, Khaliq H, Li K, Ahmed S, Sajid A, Zhang B, Chen P, Qiu Y, Cao J, He Q. PK-PD integration modeling and cutoff value of florfenicol against Streptococcus suis in pigs. Front Pharmacol. 2018; 9(2). https://doi.org/10.3389/fphar.2018.00002

Mijares GNK. Evaluación de un preparado farmacéutico de florfenicol-alginato para optimizar su farmacocinética en cerdos [undergraduate thesis]. México: Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia; 2024.

Palacios-Arriaga JM, Gutierrez-Pabello JA, Chavez-Gris G, Hernandez-Castro R. Efficacy of florfenicol premix in weanling pigs experimentally infected with Actinobacillus pleuropneumoniae. Rev Latin Microb. 2000; 42(1): 27–33. https://www.medigraphic.com/pdfs/lamicro/mi-2000/mi001e.pdf

Pijpers A, Schoevers EJ, Van Gogh H, Van Leengoed LA, Visser IJ, Van Miert AS, Verheijden JH. The influence of disease on feed and water consumption and on pharmacokinetics of orally administered oxytetracycline in pigs. J Anim Sci. 1991; 69(7): 2947–2954. https://doi.org/10.2527/1991.6972947x

Ščuka L. Florfenicol – Pharmacodynamic, pharmacokinetics and clinical efficacy of oral formulations in domestic animals: A systematic review. Vet Glas. 2005; 59(5–6): 635–654. https://doi.org/10.2298/VETGL0506635S

Somogyi Z, Mag P, Simon R, Kerek Á, Makrai L, Biksi I, Jerzsele Á. Susceptibility of Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis isolated from pigs in Hungary between 2018 and 2021. Antibiotics. 2003; 12(8): 1298. https://doi.org/10.3390/antibiotics12081298

Somogyi Z, Mag P, Kovács D, Kerek Á, Szabó P, Makrai L, Jerzsele Á. Synovial and systemic pharmacokinetics of florfenicol and PK/PD integration against Streptococcus suis in pigs. Pharmaceutics. 2020; 14(1): 109. https://doi.org/10.3390/pharmaceutics14010109

Somogyi Z, Mag P, Simon R, Kerek Á, Szabó P, Albert E, Biksi I, Jerzsele Á. Pharmacokinetics and pharmacodynamics of florfenicol in plasma and synovial fluid of pigs at a dose of 30 mg/kg bw, following intramuscular administration. Antibiotics. 2023; 12(14): 758. https://doi.org/10.3390/antibiotics12040758

Swinkels JM, Pijpers A, Vernooy JCM, Van Nes A, Verheijden JHM. Effects of ketoprofen and flunixin in pigs experimentally infected with Actinobacillus pleuropneumoniae. J Vet Pharmacol Ther. 1994; 17(4): 299–303. https://doi.org/10.1111/j.1365-2885.1994.tb00249.x

Ueda Y, Suenaga I. In vitro antibacterial activity of florfenicol against Actinobacillus pleuropneumoniae. J Vet Med Sci. 1995; 57(2): 363–364. https://doi.org/10.1292/jvms.57.363

Vilaró A, Novell E, Enrique-Tarancón V, Balielles J, Vilalta C, Martínez S, Sauce LJ. Antimicrobial susceptibility pattern of porcine respiratory bacteria in Spain. Antibiotics. 2020; 9(7): 402. https://doi.org/10.3390/antibiotics9070402

Voorspoels J, D’Haese E, De Craene BA, Vervaet C, De Riemaecker D, Deprez P, Nelis H, Remon JP. Pharmacokinetics of florfenicol after treatment of pigs with single oral or intramuscular doses or with medicated feed for three days. Vet Rec. 1999; 145(14): 397–399. https://doi.org/10.1136/vr.145.14.397

Wentzel JM. A comparative study of the minimum inhibitory and mutant prevention concentrations of florfenicol and oxytetracycline for animal isolates of Pasteurella multocida and Salmonella Typhimurium [Master’s thesis]. South Africa: University of Pretoria, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science; 2012. p.44. https://repository.up.ac.za/server/api/core/bitstreams/64d397a9-1388-47c0-83f1-e0c99ed7f34f/content

World Health Organization (WHO). Critically important antimicrobials for human medicine (5th rev.). 2017. ISBN: 9789241512220. https://www.who.int/publications/i/item/9789241512220

Downloads

Published

2025-10-20

How to Cite

Gutiérrez, L., Tapia-Pérez, G., González, P., Fajardo-Vargas, J., Monroy-Barreto, M., & Sumano, H. (2025). Evaluation of serum florfenicol concentrations and PK/PD ratios in pigs following In-Feed administration at four dose levels. Revista Colombiana De Ciencias Pecuarias. https://doi.org/10.17533/udea.rccp.e360197

Issue

Section

Accepted Manuscripts