Modelación estructural de la proteína de la cápside del virus a de la papa (PVA, Potyvirus)

Autores/as

  • Pablo Gutiérrez Universidad Nacional de Colombia
  • Sara Bastos-Aristizábal Universidad Nacional de Colombia
  • Mauricio Marín Universidad Nacional de Colombia

Palabras clave:

cápside viral, modelo estructural, potyvirus, PVA

Resumen


A diferencia de lo que ocurre con diversos virus icosahédricos, la estructura a alta resolución de la cápside de los virus flexuosos de plantas pertenecientes a la familia Potyviviridae no ha podido ser determinada aún. Los potyvirus son un grupo de gran importancia económica en la agricultura al afectar cultivos como papa, tomate, tabaco, papaya y caña de azúcar, entre muchos otros; por lo cual la comprensión de su estructura puede arrojar información valiosa para lograr un conocimiento más detallado de sus mecanismos biológicos, con miras al diseño de estrategias de control. En este trabajo se presenta un modelo de la estructura tridimensional de la región central de la proteína de la cápside del virus A de la papa (PVA), utilizando una combinación de herramientas de predicción de estructura secundaria y docking. El modelo presentado tiene dimensiones compatibles con la estructura de baja resolución obtenida en otros estudios mediante microscopía electrónica y será de gran utilidad en el diseño de experimentos de mutagénesis dirigida, enfocados en el estudio del ensamblaje de la partícula viral y como base para modelar la estructura de otras especies potyvirales de importancia actual en Colombia como el virus Y de la papa (PVY), virus de la malformación de las hojas del tomate de árbol (TaLMV) y el virus de la mancha anular de la papaya (PRSV).

|Resumen
= 97 veces | PDF
= 65 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Pablo Gutiérrez, Universidad Nacional de Colombia

Laboratorio de Microbiología Industrial, Facultad de Ciencias. Universidad Nacional de Colombia (Sede Medellín). Medellín (Antioquia), Colombia

Citas

Carrington JC, Freed DD, Sanders TC. 1989. Autocatalytic processing of the potyvirus helper component proteinase in Escherichia coli and in vitro. Journal of Virology 63: 4459- 4463.

Carrington JC, Dougherty WG. 1987. Small nuclear inclusion protein encoded by a plant potyvirus genome is a protease. Journal of Virology, 61: 2540-2548.

DeLano WL. 2002. The PyMOL Molecular Graphics System. DeLano Scientific Homepage. Fecha de acceso: 10 de noviembre de 2010. Disponible en: .

Dolja VV, Haldeman R, Robertson NL, Dougherty WG, Carrington JC. 1994. Distinct functions of capsid protein in assembly and movement of Tobacco etch potyvirus in plants. EMBO Journal, 13: 1482-1491.

Doolittle RF, Garnier J, Gibrat JF, Robson B. 1996. GOR secondary structure prediction method version IV. Methods in Enzymology, 266: 540-553.

Duggal R, Hall TC. 1993. Identification of domains in Brome mosaic virus RNA-1 and coat protein necessary for specific interaction and encapsidation. Journal of Virology, 67: 6406-6412.

Ehrenfeld N, González A, Canon P, Medina C, Pérez-Acle T, Arce-Johnson P. 2008. Structure-function relationship between the tobamovirus TMV-Cg coat protein and the HR-like response. Journal of General Virology, 89: 809-817.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95-98.

Henikoff S, Henikoff JG. 1992. Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America, 89: 10915-10919.

Hooft RWW, Vriend G, Sander C, Abola EE. 1996. Errors in protein structures. Nature, 381: 272.

Hopp TP, Woods KR. 1981. Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences of the United States of America, 78: 3824-3828.

Kang SH, Lim WS, Hwang SH, Park JW, Choi HS, Kim KH. 2006. Importance of the C-terminal domain of Soybean mosaic virus coat protein for subunit interactions. Journal of General Virology, 87: 225-229.

Kendall A, McDonald M, Bian W, Bowles T, Baumgarten SC, Shi J, Stewart PL, Bullitt E, Gore D, Irving TC, Havens WM, Ghabrial SA, Wall JS, Stubbs G. 2008.

Structure of flexible filamentous plant viruses. Journal of Virology, 82: 9546-9554.

Langenberg WG, Zhang L. 1997. Immunocytology shows the presence of Tobacco etch virus P3 protein in nuclear inclusions. Journal of Structural Biology, 118: 243-247.

Lin L, Shi Y, Luo Z, Lu Z, Zheng H, Yan F, Chen J, Chen J, Adams MJ, Wu Y. 2009. Protein-protein interactions in two potyviruses using the yeast two-hybrid system. Virus Research, 142: 36-40.

Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB. 2003a. Protein disorder prediction: implications for structural proteomics. Structure, 11: 1453-1459.

Linding R, Russell RB, Neduva V, Gibson TJ. 2003b. GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Research, 31(13): 3701-3708.

Merits A, Guo D, Saarma M. 1998. VPg, coat protein and five non-structural proteins of Potato A potyvirus bind RNA in a sequence-unspecific manner. Journal of General Virology, 79: 3123-3127.

Mink GI, Vetten HJ, Wyatt SD, Berger PH, Silbernagel MJ. 1999. Three epitopes located on the coat protein amino terminus of viruses in the Bean common mosaic potyvirus subgroup. Archives of Virology, 144: 1174-1189.

Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. 1998. Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. Journal of Computational Chemistry, 19: 1639-1662.

Namba K. 2001. Roles of partly unfolded conformations in macromolecular self-assembly. Genes Cells, 6: 1-12.

Namba K, Stubbs G. 1986. Structure of Tobacco mosaic virus at 3.6 A resolution: implications for assembly. Science, 231: 1401-1406.

Nemykh MA, Efimov AV, Novikov VK, Orlov VN, Arutyunyan AM, Drachev VA, Lukashina EV, Baratova LA, Dobrov EN. 2008. One more probable structural transition in Potato virus X virions and a revised model of the virus coat protein structure. Virology, 373: 61-71.

Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. 2005. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26: 1781-1802.

Rajamaki M, Merits A, Rabenstein F, Andrejeva J, Paulin L, Kekarainen T, Kreuze JF, Forster RL, Valkonen JP. 1998. Biological, serological and molecular differences among isolates of a Potato A potyvirus. Phytopathology, 88: 311-321.

Riechmann JL, Laín S, García JA. 1992. Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 73: 1-16.

Riechmann JL, Cervera MT, García JA. 1995. Processing of the Plum pox virus polyprotein at the P3-6K1 junction is not required for virus viability. Journal of General Virology, 76: 951-956.

Rost B. 2001. Review: Protein secondary structure prediction continues to rise. Journal of Structural Biology, 134: 204-218.

Rost B, Yachdav G, Liu J. 2004. The predict protein Server. Nucleic Acids Research, 32: 321-326.

Sali A, Blundell TL. 1995. Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234: 779-815.

Shukla DD, Ward CW. 1989. Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. Advances in Virus Research, 36: 273-314.

Singh RP, Valkonen JPT, Gray SM, Boonham N, Jones RAC, Kerlan C, Schubert J. 2008. Brief review: The naming of potato virus Y strains infecting potato. Archives of Virology 153: 1-13.

Urcuqui-Inchima S, Haenni AL, Bernardi F. 2001. Potyvirus proteins: a wealth of functions. Virus Research, 74 (1-2): 157-75.

Van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB. 2000. Virus Taxonomy - Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press.

New York. 1162 p.

Verchot J, Koonin EV, Carrington JC. 1991. The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology, 185: 527-35.

Verchot J, Carrington JC. 1995. Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification. Journal of Virology, 69: 3668-3674.

Descargas

Publicado

2017-10-26

Cómo citar

Gutiérrez, P., Bastos-Aristizábal, S., & Marín, M. (2017). Modelación estructural de la proteína de la cápside del virus a de la papa (PVA, <i>Potyvirus</i>). Actualidades Biológicas, 33(94), 75–84. Recuperado a partir de https://revistas.udea.edu.co/index.php/actbio/article/view/14218

Número

Sección

Artículos completos

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.