Degradación del clorotalonilo por un consorcio microbiano aislado de humedales construidos en ensayos de laboratorio

Autores/as

  • Karina A. Ríos-Montes Universidad de Antioquia / Universidad de San Buenaventura
  • Gustavo A. Peñuela-Mesa Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.acbi.329003

Palabras clave:

carbono orgánico, clorotalonilo, consorcio microbiano, degradación, humedales construidos

Resumen

A escala de laboratorio se evaluó la degradación del clorotalonilo (CLT) por un consorcio microbiano aislado de la biopelícula formada en la grava de humedales construidos de flujo subsuperficial horizontal, usados para el tratamiento de agua residual agrícola, y se estimó el efecto del plaguicida en la dinámica de crecimiento de la comunidad de heterótrofos totales (HT) y la población de Pseudomonas spp. Una concentración de CTL de 0,6 mg l-1 y dos niveles de concentración de carbono orgánico disuelto (COD) de 20 y 100 mg l-1 (empleando glucosa como fuente de carbono), fueron usados en la experimentación llevada a cabo en una solución de agua residual sintética. Las variables respuesta fueron: concentración residual de CLT, concentración residual de COD, y recuento de unidades formadoras de colonias (UFC) de las poblaciones de HT y Pseudomonas spp. Las variables control que se midieron durante el proceso para determinar cambios en las condiciones fisicoquímicas del medio, fueron: conductividad eléctrica, oxígeno disuelto, pH y potencial redox. Se comprobó que el nivel de concentración de carbono orgánico afectó notablemente la degradación del CLT. Con 100 mg l-1 de COD se alcanzó 99,7% de degradación de CLT a las 168 horas del ensayo; en tanto que 45,1%, se alcanzó con 20 mg l-1 de COD. En el análisis cromatográfico no se detectaron productos de degradación.

|Resumen
= 125 veces | PDF
= 92 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Karina A. Ríos-Montes, Universidad de Antioquia / Universidad de San Buenaventura

Grupo de Diagnóstico y Control de la Contaminación (GDCON), Facultad de Ingeniería, Universidad de Antioquia. A. A. 1226. Medellín (Antioquia), Colombia.

Grupo de Investigación en Microbiología y Ambiente (GIMA), Facultad de Ciencias de la Salud, Universidad de San Buenaventura. Calle Real de Ternera, Cartagena (Bolivar), Colombia.

Gustavo A. Peñuela-Mesa, Universidad de Antioquia

Grupo de Diagnóstico y Control de la Contaminación (GDCON), Facultad de Ingeniería, Universidad de Antioquia. A. A. 1226. Medellín (Antioquia), Colombia.

Citas

Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L. 2008. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems and Environment, 123: 247-260.

Bhatt P, Kumar MS, Mudliar S, Chakrabarti T. 2007. Biodegradation of chlorinate compounds: A review. Critical Reviews in Environmental Science and Technology, 37: 165-198.

Bishop PL. 2007. The role of biofilms in water reclamation and reuse. Water Science and Technology, 55 (1-2): 19-26.

Budd R, O’geen A, Goh, K, Bondarenko S, Gan J. 2011. Removal mechanisms and fate of insecticides in constructed wetlands. Chemosphere, 83 (11): 1581-1587.

Carlo-Rojas Z, Bello-Mendoza R, Figueroa MS, Sokolov MY. 2004. Chlorothalonil degradation under anaerobic conditions in an agricultural tropical soil. Water Air Soil Pollution, 151: 397-409.

Chaves A, Shea D, Danehower D. 2008. Analysis of chlorothalonil and degradation products in soil and water by GC/MS and LC/MS. Chemosphere, 71: 629-638.

Chen S, Edwards C, Subler S. 2001. Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biology & Biochemistry, 33: 1971-1980.

Cox C. Chlorothalonil. 1997. Journal of Pesticide Reform, 17: 14-20.

Córdova RA, Gordillo L, Bello-Mendoza R, Sánchez J. 2011. Use of spent substrate after Pleurotus pulmonarius cultivation for the treatment of chlorothalonil containing waste water. Journal of Environmental Management, 92: 948-952.

Davis L. 2000. Substrates. A handbook of constructed wetlands. Volume 1: General considerations [Internet]. Washington (D. C.): U. S. Environmental Protection Agency (EPA). p. 27-30. Disponible en: <http://water.epa.gov/type/wetlands/restore/upload/constructed-wetlands-handbook.pdf>.

Di-Martino C, López N, Raiger L. 2012. Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. International Biodeterioration and Biodegradation, 67: 15-20.

Gutierrez RF, Santiesteban A, Cruz-López L, Bello-Mendoza R. 2007. Removal of chlorothalonil, methyl parathion and methamidophos from water by the fenton reaction. Environmental Technology, 28 (3): 267-272.

Haarstad K, Braskerud B. 2005. Pesticide retention in the watershed and in a small constructed wetland treating diffuse pollution. Water Science and Technology, 51 (3-4): 143-150.

Imfeld G, Vuilleumier S. 2012. Measuring the effects of pesticides on bacterial communities in soil: A critical review. European Journal of Soil Biology, 49: 22-30.

Katayama A, Isemura H, Kuwatsuka S. 1991. Population change and characteristics of chlorothalonil degrading bacteria in soil. Journal of Pesticides Science, 16: 239-245.

Katayama A, Itou T, Ukai T. 1997. Ubiquitous capability to substitute chlorine atoms of chlorothalonil in bacteria. Journal of Pesticides Science, 22: 12-16.

Kim YM, Park K, Joo GJ, Jeong EM, Kim JE, Rhee IK. 2004. Glutathione-dependent biotransformation of the fungicide chlorothalonil. Journal of Agricultural and Food Chemistry, 52: 4192-4196.

Kwon JW, Armbrust KL. 2006. Degradation of chlorothalonil in irradiated water/sediment systems. Journal of Agricultural and Food Chemistry, 54: 3651-3657.

Liang B, Li R, Jiang D, Sun J, Qiu J, Zhao Y, Li S, Jiang J. 2010. Hydrolytic dechlorination of chlorothalonil by Ochrobactrumsp. CTN-11 Isolated from a Chlorothalonil-Contaminated Soil. Current Microbiology, 61: 226-233.

Liang B, Wang G, Zhao Y, Chen K, Li S, Jiang J. 2011. Facilitation of bacterial adaptation to chlorothalonil-contaminated sites by horizontal transfer of the chlorothalonil hydrolytic dehalogenase gene. Applied and Environmental Microbiology, 77 (12): 4268-4272.

Lu J, Wu L, Newman J, Faber B, Gan J. 2006. Degradation of pesticides in nursey recycling pond waters. Journal of Agricultural and Food Chemistry, 54: 2658-2663.

Morató J. 2001. Formación de biofilms y riesgo sanitario en sistemas de distribución de agua [Tesis doctoral]. [Barcelona (España)]: Universidad Autónoma de Barcelona. p. 271.

Mori T, Fujie K, Kuwatsuka S, Katayama A. 1996. Accelerated microbial degradation of chlorothalonil in soils amended with farmyard manure. Soil Science and Plant Nutrition, 42: 315-322.

Motonaga K, Takagi K, Matumoto S. 1996. Biodegradation of chlorothalonil in soil after suppression of degradation. Biology and Fertility of Soil, 23: 340-345.

Peñuela GA, Barceló D. 1998. Photodegradation and stability of chlorothalonil in water studied by solid-phase disk extraction, followed by gas chromatographic techniques. Journal of Chromatography A, 823: 81-90.

Porras J, Fernández JJ, Torres-Palma RA, Richard C. 2014. Humic substances enhance chlorothalonil phototransformation via photoreduction and energy transfer. Environmental Science and Technology, 48: 2218-2225.

Regitano JB, Tornisielo VL, Lavorenti A, Pacovsky RS. 2001. Transformation pathways of 14C-chlorothalonil in tropical soil. Archives of Environmental Contamination and Toxicology, 40: 295-302.

Rice EW, Baird RB, Eaton AD, Clesceri LS, editores. 2012. Standard methods for the examination of water and wastewater. 22nded. Washington (D. C.): American Public Health Association (APHA), American Water Works Association, Water Environment Federation. p. 1368.

Sepulveda C, Peñuela G, Echeverri JD, Agudelo S. 2006. Identificación de los productos de degradación del clorotalonilo por fotodegradación, hidrólisis y fenton. Gestión y Ambiente, 9 (3): 157-166.

Sherrard RM, Bearr JS, Murray-Gulde CL, Rodgers JH Jr, Shah YT. 2004. Feasibility of constructed wetlands for removing chlorothalonil and chlorpyrifos from aqueous mixtures. Environmental Pollution, 127: 385-394.

Shi XZ, Guo RJ, Takagi K, Miao ZQ, Li SD. 2011. Chlorothalonil degradation by Ochrobactrum lupini strain TP-D1 and identification of its metabolites. World Journal of Microbiology and Biotechnology, 27: 1755-1764.

Sigler W, Turco R. 2002. The impact of chlorotalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Applied Soil Ecology, 21: 107-118.

Singh B.K, Walker A, Wright DJ. 2002. Persistence of chlorpyrifos, fenamiphos, chlorothalonil, and pendimethalin in soil and their effects on soil microbial characteristics. Bulletin of Environmental Contamination and Toxicology, 69: 181-188.

Van der Pas L, Master AM, Boesten JT, Leistra M. 1999. Behaviour of metamitron and hydroxychlorthalonil in low humic sandy soils. Pesticide Science, 55: 923-934.

Vásquez E, Peñuela G, Agudelo S. 2010. Estudio de la fotodegradación del clorotalonilo usando las técnicas de fenton y fotocatálisis con dióxido de titanio mediante radiación solar. Revista Facultad de Ingeniería de la Universidad de Antioquia, 51: 105-113.

Vymazal, J. 2009. The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecological Engineering, 35: 1-17.

Wang G, Liang B, Li F, Li S. 2011a. Recent advances in the biodegradation of chlorothalonil. Current Microbiology, 63: 450-457.

Wang G, Chen H, Bi M, Li S. 2012. Bioremediation of chlorothalonil contaminated soil by utilizing Pseudomonas sp. strain CTN-3. Chinese Journal of Applied Ecology, 23(3): 807-811.

Wang H, Wang C, Chen F, Wang X. 2011b. Anaerobic degradation of chlorothalonil in four paddy soils. Ecotoxicology and Environmental Safety, 74: 1000-1005.

Wasi S, Jeelani G, Ahmad M. 2008. Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain. Chemosphere, 71: 1348-1355.

Wu X, Cheng L, Cao Z, Yu Y. 2012. Accumulation of chlorothalonil successively applied to soil and its effect on microbial activity in soil. Ecotoxicology and Environmental Safety, 81: 65-69.

Xuedong W, Huili W, Defang F. 2005. Biodegradation of imazapyr by free cells of Pseudomonas fluorescens Biotype II and Bacillus cereus isolated from soil. Bulletin of Environmental Contamination and Toxicology, 74: 350-355.

Yu Y, Shan M, Fang H, Wang X, Qiang Chu X. 2006. Responses of soil microorganisms and enzymes to repeate applications of chlorothalonil. Journal of Agricultural and Food Chemistry, 54: 10070-10075.

Zhang Y, Lu J, Wu L, Chang A, Frankenberger W Jr. 2007. Simultaneous removal of chlorothalonil and nitrate by Bacillus cereus strain NS1. Science of the Total Environment, 382: 383-387

Descargas

Publicado

2017-10-02

Cómo citar

Ríos-Montes, K. A., & Peñuela-Mesa, G. A. (2017). Degradación del clorotalonilo por un consorcio microbiano aislado de humedales construidos en ensayos de laboratorio. Actualidades Biológicas, 37(102), 15–25. https://doi.org/10.17533/udea.acbi.329003

Número

Sección

Artículos completos