Chlorothalonil degradation by a microbial consortium isolated from constructed wetlands in laboratory trials

Authors

  • Karina A. Ríos-Montes Universidad de Antioquia / Universidad de San Buenaventura
  • Gustavo A. Peñuela-Mesa Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.acbi.329003

Keywords:

chlorothalonil, constructed wetlands, degradation, microbial consortium, organic carbon

Abstract

In the laboratory, we evaluated Chlotothalonil degradation by a microbial consortium isolated from the biofilm formed on the gravel of wetlands constructed with a horizontal subsurface flow for treatment of agricultural wastewater, and we estimated the effect of the pesticide on the growth dynamics of the total heterotrophic community and the population of Pseudomonas spp. A chlorothalonil concentration (CLT) of 0,6 mg l-1 and two levels of dissolved organic carbon concentration (COD) of 20 and 100 mg l-1 (employing glucose as a carbon source) were used in the experiments conducted in a solution of synthetic waste water. The response variables were: residual CLT concentration, residual COD concentration, and counts of colony forming units (CFU) of heterotrophic bacteria and Pseudomonas spp. The control variables measured during the process to determine changes in the physicochemical conditions were: electrical conductivity, dissolved oxygen, pH, and redox potential. It was shown that the level of organic carbon concentration notably affected CLT degradation. With 100 mg l-1 of COD, a 99.7% degradation of CLT was attained after 168 h of trial; while 45.1% was attained with 20 mg l-1 of COD. In the chromatographic analysis no degradation products were detected.

|Abstract
= 240 veces | PDF (ESPAÑOL (ESPAÑA))
= 131 veces|

Downloads

Download data is not yet available.

Author Biographies

Karina A. Ríos-Montes, Universidad de Antioquia / Universidad de San Buenaventura

Grupo de Diagnóstico y Control de la Contaminación (GDCON), Facultad de Ingeniería, Universidad de Antioquia. A. A. 1226. Medellín (Antioquia), Colombia.

Grupo de Investigación en Microbiología y Ambiente (GIMA), Facultad de Ciencias de la Salud, Universidad de San Buenaventura. Calle Real de Ternera, Cartagena (Bolivar), Colombia.

Gustavo A. Peñuela-Mesa, Universidad de Antioquia

Grupo de Diagnóstico y Control de la Contaminación (GDCON), Facultad de Ingeniería, Universidad de Antioquia. A. A. 1226. Medellín (Antioquia), Colombia.

References

Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L. 2008. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems and Environment, 123: 247-260.

Bhatt P, Kumar MS, Mudliar S, Chakrabarti T. 2007. Biodegradation of chlorinate compounds: A review. Critical Reviews in Environmental Science and Technology, 37: 165-198.

Bishop PL. 2007. The role of biofilms in water reclamation and reuse. Water Science and Technology, 55 (1-2): 19-26.

Budd R, O’geen A, Goh, K, Bondarenko S, Gan J. 2011. Removal mechanisms and fate of insecticides in constructed wetlands. Chemosphere, 83 (11): 1581-1587.

Carlo-Rojas Z, Bello-Mendoza R, Figueroa MS, Sokolov MY. 2004. Chlorothalonil degradation under anaerobic conditions in an agricultural tropical soil. Water Air Soil Pollution, 151: 397-409.

Chaves A, Shea D, Danehower D. 2008. Analysis of chlorothalonil and degradation products in soil and water by GC/MS and LC/MS. Chemosphere, 71: 629-638.

Chen S, Edwards C, Subler S. 2001. Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biology & Biochemistry, 33: 1971-1980.

Cox C. Chlorothalonil. 1997. Journal of Pesticide Reform, 17: 14-20.

Córdova RA, Gordillo L, Bello-Mendoza R, Sánchez J. 2011. Use of spent substrate after Pleurotus pulmonarius cultivation for the treatment of chlorothalonil containing waste water. Journal of Environmental Management, 92: 948-952.

Davis L. 2000. Substrates. A handbook of constructed wetlands. Volume 1: General considerations [Internet]. Washington (D. C.): U. S. Environmental Protection Agency (EPA). p. 27-30. Disponible en: <http://water.epa.gov/type/wetlands/restore/upload/constructed-wetlands-handbook.pdf>.

Di-Martino C, López N, Raiger L. 2012. Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. International Biodeterioration and Biodegradation, 67: 15-20.

Gutierrez RF, Santiesteban A, Cruz-López L, Bello-Mendoza R. 2007. Removal of chlorothalonil, methyl parathion and methamidophos from water by the fenton reaction. Environmental Technology, 28 (3): 267-272.

Haarstad K, Braskerud B. 2005. Pesticide retention in the watershed and in a small constructed wetland treating diffuse pollution. Water Science and Technology, 51 (3-4): 143-150.

Imfeld G, Vuilleumier S. 2012. Measuring the effects of pesticides on bacterial communities in soil: A critical review. European Journal of Soil Biology, 49: 22-30.

Katayama A, Isemura H, Kuwatsuka S. 1991. Population change and characteristics of chlorothalonil degrading bacteria in soil. Journal of Pesticides Science, 16: 239-245.

Katayama A, Itou T, Ukai T. 1997. Ubiquitous capability to substitute chlorine atoms of chlorothalonil in bacteria. Journal of Pesticides Science, 22: 12-16.

Kim YM, Park K, Joo GJ, Jeong EM, Kim JE, Rhee IK. 2004. Glutathione-dependent biotransformation of the fungicide chlorothalonil. Journal of Agricultural and Food Chemistry, 52: 4192-4196.

Kwon JW, Armbrust KL. 2006. Degradation of chlorothalonil in irradiated water/sediment systems. Journal of Agricultural and Food Chemistry, 54: 3651-3657.

Liang B, Li R, Jiang D, Sun J, Qiu J, Zhao Y, Li S, Jiang J. 2010. Hydrolytic dechlorination of chlorothalonil by Ochrobactrumsp. CTN-11 Isolated from a Chlorothalonil-Contaminated Soil. Current Microbiology, 61: 226-233.

Liang B, Wang G, Zhao Y, Chen K, Li S, Jiang J. 2011. Facilitation of bacterial adaptation to chlorothalonil-contaminated sites by horizontal transfer of the chlorothalonil hydrolytic dehalogenase gene. Applied and Environmental Microbiology, 77 (12): 4268-4272.

Lu J, Wu L, Newman J, Faber B, Gan J. 2006. Degradation of pesticides in nursey recycling pond waters. Journal of Agricultural and Food Chemistry, 54: 2658-2663.

Morató J. 2001. Formación de biofilms y riesgo sanitario en sistemas de distribución de agua [Tesis doctoral]. [Barcelona (España)]: Universidad Autónoma de Barcelona. p. 271.

Mori T, Fujie K, Kuwatsuka S, Katayama A. 1996. Accelerated microbial degradation of chlorothalonil in soils amended with farmyard manure. Soil Science and Plant Nutrition, 42: 315-322.

Motonaga K, Takagi K, Matumoto S. 1996. Biodegradation of chlorothalonil in soil after suppression of degradation. Biology and Fertility of Soil, 23: 340-345.

Peñuela GA, Barceló D. 1998. Photodegradation and stability of chlorothalonil in water studied by solid-phase disk extraction, followed by gas chromatographic techniques. Journal of Chromatography A, 823: 81-90.

Porras J, Fernández JJ, Torres-Palma RA, Richard C. 2014. Humic substances enhance chlorothalonil phototransformation via photoreduction and energy transfer. Environmental Science and Technology, 48: 2218-2225.

Regitano JB, Tornisielo VL, Lavorenti A, Pacovsky RS. 2001. Transformation pathways of 14C-chlorothalonil in tropical soil. Archives of Environmental Contamination and Toxicology, 40: 295-302.

Rice EW, Baird RB, Eaton AD, Clesceri LS, editores. 2012. Standard methods for the examination of water and wastewater. 22nded. Washington (D. C.): American Public Health Association (APHA), American Water Works Association, Water Environment Federation. p. 1368.

Sepulveda C, Peñuela G, Echeverri JD, Agudelo S. 2006. Identificación de los productos de degradación del clorotalonilo por fotodegradación, hidrólisis y fenton. Gestión y Ambiente, 9 (3): 157-166.

Sherrard RM, Bearr JS, Murray-Gulde CL, Rodgers JH Jr, Shah YT. 2004. Feasibility of constructed wetlands for removing chlorothalonil and chlorpyrifos from aqueous mixtures. Environmental Pollution, 127: 385-394.

Shi XZ, Guo RJ, Takagi K, Miao ZQ, Li SD. 2011. Chlorothalonil degradation by Ochrobactrum lupini strain TP-D1 and identification of its metabolites. World Journal of Microbiology and Biotechnology, 27: 1755-1764.

Sigler W, Turco R. 2002. The impact of chlorotalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Applied Soil Ecology, 21: 107-118.

Singh B.K, Walker A, Wright DJ. 2002. Persistence of chlorpyrifos, fenamiphos, chlorothalonil, and pendimethalin in soil and their effects on soil microbial characteristics. Bulletin of Environmental Contamination and Toxicology, 69: 181-188.

Van der Pas L, Master AM, Boesten JT, Leistra M. 1999. Behaviour of metamitron and hydroxychlorthalonil in low humic sandy soils. Pesticide Science, 55: 923-934.

Vásquez E, Peñuela G, Agudelo S. 2010. Estudio de la fotodegradación del clorotalonilo usando las técnicas de fenton y fotocatálisis con dióxido de titanio mediante radiación solar. Revista Facultad de Ingeniería de la Universidad de Antioquia, 51: 105-113.

Vymazal, J. 2009. The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecological Engineering, 35: 1-17.

Wang G, Liang B, Li F, Li S. 2011a. Recent advances in the biodegradation of chlorothalonil. Current Microbiology, 63: 450-457.

Wang G, Chen H, Bi M, Li S. 2012. Bioremediation of chlorothalonil contaminated soil by utilizing Pseudomonas sp. strain CTN-3. Chinese Journal of Applied Ecology, 23(3): 807-811.

Wang H, Wang C, Chen F, Wang X. 2011b. Anaerobic degradation of chlorothalonil in four paddy soils. Ecotoxicology and Environmental Safety, 74: 1000-1005.

Wasi S, Jeelani G, Ahmad M. 2008. Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain. Chemosphere, 71: 1348-1355.

Wu X, Cheng L, Cao Z, Yu Y. 2012. Accumulation of chlorothalonil successively applied to soil and its effect on microbial activity in soil. Ecotoxicology and Environmental Safety, 81: 65-69.

Xuedong W, Huili W, Defang F. 2005. Biodegradation of imazapyr by free cells of Pseudomonas fluorescens Biotype II and Bacillus cereus isolated from soil. Bulletin of Environmental Contamination and Toxicology, 74: 350-355.

Yu Y, Shan M, Fang H, Wang X, Qiang Chu X. 2006. Responses of soil microorganisms and enzymes to repeate applications of chlorothalonil. Journal of Agricultural and Food Chemistry, 54: 10070-10075.

Zhang Y, Lu J, Wu L, Chang A, Frankenberger W Jr. 2007. Simultaneous removal of chlorothalonil and nitrate by Bacillus cereus strain NS1. Science of the Total Environment, 382: 383-387

Published

2017-10-02

How to Cite

Ríos-Montes, K. A., & Peñuela-Mesa, G. A. (2017). Chlorothalonil degradation by a microbial consortium isolated from constructed wetlands in laboratory trials. Actualidades Biológicas, 37(102), 15–25. https://doi.org/10.17533/udea.acbi.329003

Issue

Section

Full articles