Genetic diversity in the germplasm bank of mulberry [Morusspp. (Rosales: Moraceae)] belonging to the “El Pilamo” Experimental Farm, Universidad Tecnológica de Pereira, Pereira (Risaralda), Colombia

Authors

  • Duverney Gaviria-Arias Universidad Tecnológica de Pereira
  • Enrique Aguilar-Fernández Universidad Tecnológica de Pereira
  • Heidy Navia-Morocho Universidad Tecnológica de Pereira
  • Álvaro Alegría-Soto Universidad Tecnológica de Pereira

DOI:

https://doi.org/10.17533/udea.acbi.14240

Keywords:

AFLPs, molecular characterization, population structure, Morus spp.

Abstract

Using amplified fragment length polymorphisms (AFLPs), the genetic diversity of 31 accessions of the mulberry, Morus spp. (Moraceae) from the germplasm collection of the experimental farm “El Pílamo” (Universidad Tecnológica de Pereira, Colombia) were analyzed. Five primer combinations generated 152 polymorphic AFLP bands with an average correlation of 20% and allowed analysis of 64.12% of the total diversity present in these accessions. Genetic diversity, relationships among the accessions and the degree of population structure were evaluated. The primer combinations showed mean heterozygosity and genetic diversity values of 0.2332 and 0.2302, respectively. Cluster analysis showed that each of the 31 accessions has a different molecular genotype. Five groups were recognized. AMOVA analysis revealed that 77% of the diversity was within populations and 23% between the recognized molecular groups. The groups exhibited an FST value of 0.235 and a gene flow value of 1.1. The molecularly established groups showed elevated levels of both genetic distance and polymorphic loci, especially populations 1 and 5. We conclude that mulberry has high genomic complexity, as evidenced in the collection investigated here.

|Abstract
= 258 veces | PDF (ESPAÑOL (ESPAÑA))
= 105 veces|

Downloads

Download data is not yet available.

Author Biographies

Duverney Gaviria-Arias, Universidad Tecnológica de Pereira

Center for Molecular Biology and Biotechnology, Faculty of Health Sciences, Technological University of Pereira. Vereda "La Julita", Pereira (Risaralda), Colombia.

Enrique Aguilar-Fernández, Universidad Tecnológica de Pereira

Center for Molecular Biology and Biotechnology, Faculty of Health Sciences, Technological University of Pereira. Vereda "La Julita", Pereira (Risaralda), Colombia.

Heidy Navia-Morocho, Universidad Tecnológica de Pereira

Center for Molecular Biology and Biotechnology, Faculty of Health Sciences, Technological University of Pereira. Vereda "La Julita", Pereira (Risaralda), Colombia.

Álvaro Alegría-Soto, Universidad Tecnológica de Pereira

Center for Molecular Biology and Biotechnology, Faculty of Health Sciences, Technological University of Pereira. Vereda "La Julita", Pereira (Risaralda), Colombia.

References

Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S, Thangavelu K, Nagaraju J. 2004. Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genetics, 5: 1-8. DOI: https://doi.org/10.1186/1471-2156-5-1

Bhattacharya E, Ranade SA. 2001. Molecular distinction amongst varieties of mulberry using RAPD and DAMD profiles. BMC Plant Biology, 1 (3): 1-8. DOI: https://doi.org/10.1186/1471-2229-1-3

Cappellozza L, Coradazzi AT, Tornadore N. 1995. Studies on the phenotypic variability of seven cultivars of Morus alba L and three of Morus multicaulis P. (Moraceae) - Part I. Sericologia, 35 (2): 257-270.

Datta RK [Internet]. 2000. Mulberry cultivation and utilization in India. FAO electronic conference on mulberry for animal production (Morus L). Fecha de acceso: 23 de enero de 2012. Disponible en: <http://www.fao.org/DOCREP/005/X9895E/x9895e04.htm#TopOfPage>.

Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus, 12 (1): 13-15. DOI: https://doi.org/10.2307/2419362

Excoffier L. 1995. Analysis of molecular variance (AMOVA) version 1.55. Geneva (Italia): LGB, University of Geneva.

Fotadar RK, Dandin SB. 1998. Genetic divergence in mulberry. Sericologia, 38 (1): 115-125.

Hirano H. 1982. Varietal differences of leaf protein profiles in mulberry. Phytochemistry, 21: 1513-1518. DOI: https://doi.org/10.1016/S0031-9422(82)85008-5

Kalpana D, Hyuk Choi S, Ki Choi T, Senthil K, Soo Lee Y. 2012. Assessment of genetic diversity among varieties of mulberry using RAPD and ISSR fingerprinting. Scientia Horticulturae, 134: 79-87. DOI: https://doi.org/10.1016/j.scienta.2011.11.002

Katsumata F. 1971. Shape of idioblast in mulberry leaves with special reference to the classification of mulberry trees. Journal of Sericulture Science of Japan, 40 (4): 312-322.

Lynch M, Milligan BG. 1994. Analysis of population genetic structure with RAPD markers. Molecular Ecology, 3: 91-99 DOI: https://doi.org/10.1111/j.1365-294X.1994.tb00109.x

Mantel NA. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research, 27: 209-220.

Miller MP. 1997. Tools for population genetic analyses (TFPGA). Version 1.3. Computer software distributed by author.

Nei M. 1973. Analysis of gene diversity in subdivided populations. Proceeding of the National Academy of Science, 70: 3321-3323. DOI: https://doi.org/10.1073/pnas.70.12.3321

Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 538-590. DOI: https://doi.org/10.1093/genetics/89.3.583

Peakall R, Smouse PE. 2006. GENALEX 6: genetic analysis in Excel. Population genetic, software for teaching and research. Molecular Ecology Notes, 6: 288-295. DOI: https://doi.org/10.1111/j.1471-8286.2005.01155.x

Rohlf FJ. 2002. NTSYS pc: Numerical taxonomy system, Version 2.1. Setauket (New York, U. S. A.): Exeter Publishing.

Sánchez MD. 2000. Mulberry, an exceptional forage available almost worldwide. [Internet], Fecha de acceso: 2012 enero 23. Disponible en: <http://www.fao.org/ag/AGA/AGAP/FRG/Mulberry/Papers/HTML/

Mulbwar2.htm>.

Shabir AW, Bhat MA, Malik GN, Kamili AS, Mir MR, Bhat SA, Wani N, Razvi SM, Akhtar S, Bhat KA. 2010. Molecular markers and their role in mulberry improvement. International Journal of Current Research, 4: 20-24.

Sharma A, Sharma R, Machii H. 2000. Assesment of genetic diversity in a Morus germplasm collection using fluorescence-based AFLP markers. Theoretical and Applied Genetics, 101: 1049-1055. DOI: https://doi.org/10.1007/s001220051579

Sneath PHA, Sokal RR. 1973. Numerical taxonomy, the principles and practice of numerical classification. San Francisco (U. S. A.): W. H. Freeman & Co. p. 573.

Sokal RR, Rohlf FJ. 2012. Biometry: the principles and practice of statistics in biological research. 4th ed. New York (U. S. A.): W. H. Freeman and Co. p. 937.

Thome J, Gonzáles DO, Beebe S, Duque MC. 1996. AFLP analysis of gene pool of a wild bean core collection. Crop Science, 36: 1375-1384. DOI: https://doi.org/10.2135/cropsci1996.0011183X003600050048x

Vijayan K, Chatterjee SN. 2003. ISSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance tobreeding programs. Euphytica, 131: 53-63. DOI: https://doi.org/10.1023/A:1023098908110

Vijayan K, Nair CV, Chatterjee SN. 2009. Diversification of mulberry (Morus indica var. S36), a vegetatively propagated tree species. Caspian Journal of Enviromental Science, 7 (1): 23-30.

Vijayan K, Saratchandra B, Teixeira da Silva JA. 2011. Germplasm conservation in mulberry (Morus spp.). Scientia Horticulturae, 128: 371-379. DOI: https://doi.org/10.1016/j.scienta.2010.11.012

Vos P, Hogers R, Bleeker M, van der Lee T, Hornes M, Frijter A, Pot J, Kuiper M, Zabeau M. 1995. A new technique for DNA fingerprinting. Nucleic Acid Research, 23: 4407-4414. DOI: https://doi.org/10.1093/nar/23.21.4407

Wang ZW, Yu MD. 2001. AFLP analysis of genetic background of polyploid breeding materials of mulberry. Acta Sericologica Sinica, 27 (3): 170-176.

Wright S. 1931. Evolution in Medelian populations. Genetics, 28: 114-138. DOI: https://doi.org/10.1093/genetics/28.2.114

Xiang ZH, Zhang Z, Yu MD. 1995. Preliminary report on the application of RAPD in systematics of Morus L. Acta Sericologica Sinica, 21 (4): 204-208.

Yamanouchi H, Koyama A, Takyu T, Muramatsu N. 2010. Nuclear DNA amounts in diploid mulberry species (Morus spp.). Journal of Insect Biotechnology and Sericology, 79 (1): 1-8.

Yang G W, Feng L C, Jing C J. 2003. Analysis of genetic structure variance among mulberry (Morus spp L.) Populations. Acta Sericologica Sinica. 29 (4): 323-329.

Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX. 1997. POPGENE, the user-friendly shareware for population genetic analysis. Canadá: Universidad de Alberta.

Zhao WG, Pan YL, Huang MR. 2000. RAPD analysis for the germplasm resources of genus mulberry. Acta Sericologica Sinica, 4: 1-8.

Zhao WG, Pan YL. 2004. Genetic diversity of genus Morus revealed by RAPD markers in China. International Journal of Agriculture y Biology, 6: 950-954.

Zhao WG, Miao XX, Pan YL, Huang YP. 2005. Isolation and characterization of microsatellite loci from the mulberry, Morus L. Plant Science, 168 (2): 519-525. DOI: https://doi.org/10.1016/j.plantsci.2004.09.020

Zhao WG, Miao XX, Zang B, Zhang L, Pan YL, Huang YP. 2006. Construction of fingerprinting and genetic diversity of mulberry cultivars in China by ISSR markers. Acta Genetica Sinica, 33 (9): 851-860. DOI: https://doi.org/10.1016/S0379-4172(06)60119-4

Zietkiewicz E, Rafalski A, Labuda D. 1994. Genome fingerprinting by simple sequence repeat (SSR)- anchored polymerase chain reaction amplification. Genomics, 20: 176-183. DOI: https://doi.org/10.1006/geno.1994.1151

Published

2017-10-18

How to Cite

Gaviria-Arias, D., Aguilar-Fernández, E., Navia-Morocho, H., & Alegría-Soto, Álvaro. (2017). Genetic diversity in the germplasm bank of mulberry [Morusspp. (Rosales: Moraceae)] belonging to the “El Pilamo” Experimental Farm, Universidad Tecnológica de Pereira, Pereira (Risaralda), Colombia. Actualidades Biológicas, 34(96), 33–42. https://doi.org/10.17533/udea.acbi.14240

Issue

Section

Full articles

Most read articles by the same author(s)