Clonal mucropropagation of three genotypes of Mortiño, Vaccinum meridionale SW., by axilary shoots proliferation

Authors

  • Dagoberto Castro-Restrepo Universidad Católica de Oriente
  • Jairo A. Álvarez-Guzmán Universidad Católica de Oriente

DOI:

https://doi.org/10.17533/udea.acbi.329114

Keywords:

acclimatization, axillary shoots, ex vitro rooting, Vaccinium

Abstract

Mortiño (Vaccinium meridionale Sw.) is an important small fruit specie valuable for its polyphenol content. Effective mass production of plants is needed for establishing commercial plantations. The objective of this research was to develop a system of micropropagation of three wild genotypes of mortiño by means of proliferation of axillary shoots and ex vitro rooting. Mini-cuttings induced through pruning were used as a source of explants for micropropagation. After standardizing the disinfection protocol, the effect of different concentrations of 2 isopenteniladenine (2-iP) was evaluated in the WPM culture medium in the proliferation phase. The rooting was carried out under ex vitro conditions with indolbutíric acid (IBA). In the proliferation stage, a concentration of 5 mg/l of 2-iP was used, although it produced a smaller number of buds (2.1 at 1.7 for explant) than a concentration of 20 mg/l of 2-iP, but they were of axillary origin and higher. Each subculture was carried out every 30 days. These buds took root between 66.6 and 80% under ex vitro conditions with 2.000 mg/l of AIB and they had a 82.7% survival rate. The time elapsed between the rooting of the buds and their transfer to the field was three months.

|Abstract
= 454 veces | PDF (ESPAÑOL (ESPAÑA))
= 323 veces|

Downloads

Author Biographies

Dagoberto Castro-Restrepo, Universidad Católica de Oriente

Biotechnology Unit

Jairo A. Álvarez-Guzmán, Universidad Católica de Oriente

Biotechnology Unit

References

Avila HG, Cuspoca JA, Fischer G, Ligarreto GA, Quicazán MC. 2007. Caracterización fisicoquímica y organoléptica del fruto de Agraz (Vaccinium meridionale Swartz) almacenado 1 a 2 °C. Revista

Facultad Nacional de Agronomía Medellín, 60 (2): 4179-4193.

Carrazana D, León A, Herrera L, Alvarado Y, Quiñones R. 1997. Efecto de diversos fungicidas comerciales sobre hongos contaminantes en biofábricas. Centro Agrícola, 1: 61-66.

Cruz M, Acosta M, Leiva M, Alvarado Y, Lezcano M. 2002. Evaluación del efecto del complejo carbendazim-β- ciclodextrina para el control de hongos filamentosos contaminantes del cultivo in vitro de plantas.

Biotecnología Vegetal, 2 (2): 73-76.

Deberg C, Coster G, Steubaut W. 1993. Carbendazim as an alternative growth regulator in tissue culture systems. In Vitro Cell Biology, 29 (2): 89-91.

Debnath SC. 2005. A two-step procedure for adventitious shoot regeneration from in vitro-derived lingonberry leaves: shoot induction with TDZ and shoot elongation using zeatin. HortScience, 40 (1): 189-192.

Debnath SC, McRae KB. 2002. An efficient shoot regeneration

system on excised leaves of micropropagated lingonberry (Vaccinium vitis-idaea L.). Journal of Horticultural Science Biotechnology, 77 (6): 744-752.

De Klerk GJ. 1990. How to measure somaclonal variation. Acta Botanica Neerlandica, 39 (2): 129-144.

Eccher T, Noé N. 1989. Comparison between 2-iP and zeatin in the micropropagation of highbush blueberry (Vaccinium corymbosum). Acta Horticulturae, 241: 185-190

Fogaca CM, Neto AF. 2005. Role of auxin and its modulators

in the adventitious rooting of Eucalyptus species differing in recalcitrance. Plant Growth Regulation, 45 (1): 1-10.

Ford YY, Bonham EC, Cameron RWF, Blake PS, Judd HL, Harrison-Murray RS. 2002. Adventitious rooting: examining the role of auxin in an easy- and difficult-to- root plant. Plant Growth Regulation, 36 (2): 149-159.

Fukui H, Murakami Y, Harada T, Tamura T. 1991. Response of highbush blueberry axillary leaf bud apices to growth regulators and its seasonal changes. Memory Faculty Agriculture, Hokkaido University, 15: 1-6.

Gonzalez M, Lopez M, Valdes E, Ordas RJ. 2000. Micropropagation of three berry fruit species using nodal segments from fieldgrown plants. Annals of Applied Biology, 137 (1): 73-78.

Jaakola L, Tolvanen A, Laine K, Hohtola A. 2002. Micropropagation of bilberry and lingonberry. Acta Horticulturae, 574: 401-403.

Litwinczuk W, Szczerba G, Wrona D. 2005. Field performance of highbush blueberries (Vaccinium corymbosum L.) cv. ‘Herbert’ propagated by cuttings and tissue culture. Scientia Horticulturae, 106 (2): 162-169.

Litwinczuk W, Wadas M. 2008. Auxin-dependent development and habituation of highbush blueberry (Vaccinium covilleanum But. et Pl.) ‘Herbert’ in vitro shoot cultures. Scientia Horticulturae, 119 (1): 41-48.

Lloyd GB, McCown BH. 1981. Commercially feasible micropropagation of mountain laurel Kalmia latifolia by use of shoot tip culture. Procedure for International Plant Propagation Society, 30: 421-427.

Marcotrigiano M, McGlew SP. 1991. A two-stage micropropagation system for cranberries. Journal of the American Society for Horticultural Science, 116 (5): 911-916.

McCown BH. 2000. Recalcitrance of woody and herbaceous perennial plants: Dealing with genetic predeterminism. In Vitro Cellular and Developmental Biology, 36 (3): 149-154.

Medina C, Matus JT, Zúñiga M, San-Martín C, Arce-Johnson P. 2006. Occurrence and distribution of viruses in commercial plantings of Rubus, Ribes and Vaccinium species in Chile. Ciencia e Investigación Agraria, 33 (1): 23-28.

Meiners J, Schwab M, Szankowski I. 2007. Efficient in vitro regeneration systems for Vaccinium species. Plant Cell Tissue and Organ Culture, 89 (2): 169-176.

Ostrolucká MG, Libiaková G, Ondrusková E, Gajdosová A. 2004. In vitro propagation of Vaccinium species. Acta Universitatis Latviensis Biology, 676: 207-212.

Pereira MJ. 2009. Reversion to juvenility: the use of epicormics in the micropropagation of mature wild shrubs of Vaccinium cylindraceum Smith (Ericacaeae). Arquipélago Life and Marine Sciences, 26: 63-68.

Rashotte AM, Poupart J, Candace SW, Muday GK. 2003. Transport of the acid and indole -3-butiric acid, in Arabidopsis. Plant Physiology, 133: 761-772.

Qaddoury A, Amssa M. 2004. Effect of exogenous indole butyric acid on root formation and peroxidase and indole-3-acetic acid oxidase activities and phenolic contents in date Palm offshoots. Botanical Bulletin of Academia Sinica, 45 (2): 127-131.

Rache LC, Pacheco JM. 2010. Propagación in vitro de plantas adultas de Vaccinium meridionale (Ericaceae). Acta Botanica Brasilica, 24 (4): 1086-1095.

Ross J, O ́Neill D. 2001. New interactions between classical plant hormones. Trends Plant Science, 6 (1): 2-4.

Trevisan R, Cezar RF, Fritsche RN, da Silva RG, Dias EG, Corrêa A. 2008. Enraizamento de estacas herbáceas de mirtilo: influência da lesão na base e do ácido indolbutírico. Ciência e agrotecnologia, Lavras, 32 (2): 402-406.

Vallejo DA. 2000. Fomento al mortiño (Vaccinium meridionale) como especie promisoria del Parque Regional Arví. Corantioquia.

Vander Kloet SP, Dickinson TA. 2009. A subgeneric classification of the genus Vaccinium and the metamorphosis of V. section Bracteata Nakai: more terrestrial and less epiphytic in habit; more continental

and less insular in distribution. Journal Plant Research, 122 (3): 253-268.

Tetsumura T, Matsumoto Y, Sato M, Honsho Ch, Yamashita K, Komatsu H, Sugimoto Y, Kunitake H. 2008. Evaluation of basal media for micropropagation of four highbush blueberry cultivars. Scientia Horticulturae, 119 (1): 72-74.

Published

2017-10-18

How to Cite

Castro-Restrepo, D., & Álvarez-Guzmán, J. A. (2017). Clonal mucropropagation of three genotypes of Mortiño, <i>Vaccinum meridionale</i> SW., by axilary shoots proliferation. Actualidades Biológicas, 35(99), 135–144. https://doi.org/10.17533/udea.acbi.329114

Issue

Section

Full articles

Most read articles by the same author(s)