Evaluation of ethanol production from two recombinant and a commercial strains of Saccharomyces cerevisiae (Fungi: Ascomycota) in sugar-cane molasses and rejected-banana juice from Urabá, Colombia

Authors

  • Carolina Peña-Serna Universidad de Antioquia.
  • Carolina Castro-Gil Universidad de Antioquia
  • Carlos A. Peláez-Jaramillo Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.acbi.329228

Keywords:

adhII, bioethanol, recombinant Saccharomyces cerevisiae, sugar-cane molasses

Abstract

The production of bioethanol using Saccharomyces cerevisiae (Fungi: Ascomycota) is influenced by sugar concentrations and the fermentation substrate. For that reason, in this study the kinetics of biomass production, residual sugar and ethanol production of four S. cerevisiae strains were evaluated in two fermentation media (sugar-cane molasses and rejected-banana juice) at two sugar concentrations (100 and 170 g/l). The Ethanol Red® and GG570- CIBII strains exhibited the greatest ethanol production, with peak values of 119.74 (35 h) and 62 g/l (15 h), Yps 0.75 and 0.43 g/g, and Qp 3.42 and 2.61 g/l/h, respectively, at 170 g/l of sugar in the sugar-cane molasses broth. In additional, the GG570-CIBII strain showed an increase of 37.1 g/l ethanol with respect to the control strain.

|Abstract
= 259 veces | PDF (ESPAÑOL (ESPAÑA))
= 119 veces|

Downloads

Download data is not yet available.

Author Biographies

Carolina Peña-Serna, Universidad de Antioquia.

Interdisciplinary Group for Molecular Studies. Universidad de Antioquia. Medellín (Antioquia), Colombia.
Plant Biotechnology Unit. Corporation for Biological Research. Universidad de Antioquia. Medellín (Antioquia), Colombia.
 

Carolina Castro-Gil, Universidad de Antioquia

 
Plant Biotechnology Unit. Corporation for Biological Research. Universidad de Antioquia. Medellín (Antioquia), Colombia.

Carlos A. Peláez-Jaramillo, Universidad de Antioquia

Interdisciplinary Group for Molecular Studies. Universidad de Antioquia. Medellín (Antioquia), Colombia.

References

Afanador A. 2005. El banano verde de rechazo en la producción de alcohol carburante. Revista EIA, 3: 51-68. Brenda database [Internet]. 2007. Brenda - The comprehensive enzyme information system [Internet]. Department of Bioinformatics and Biochemistry TU

Braunschweig. Accessed: 16th May 2011. Available from: <http://www.brenda-enzymes.org/>.

Cazetta M, Celligoi M, Buzato J, Scarmino J. 2007. Fermentation of molasses by Zymomonas mobilis: Effects of temperature and sugar concentration on ethanol production. Bioresource Technology, 98:

-2828.

Converti A, Perego P, Lodi A, Parisi F, Del Borghi M. 1985. A kinetic study of Saccharomyces strains: performance at high sugar concentrations. Biotechnology and Bioengineering, 27: 1108-1114.

Davis L, Rogers P, Pearce J, Peiris P. 2006. Evaluation of Zymomonas based ethanol production from a hydrolysed waste starch stream. Biomass and Bioenergy, 30: 809-814.

del Rosario E, Pamatong F. 1985. Continuous-flow fermentation of banana fruit pulp sugar into ethanol by carrageenan-inmobilized yeast. Biotechnology Letters, 7: 819-820.

Doran P. 1995. Bioprocess Engineering Principles. London: Academic Press. p. 439.

Ergun M, Mutlu SF. 2000. Application of a statistical technique to the production of ethanol from sugar beet molasses by Saccharomyces cerevisiae. Bioresource Technology, 73: 251-255.

FNB (Federación Nacional de Biocombustibles) [Internet]. 2007. ABC de los alcoholes carburantes. Accessed: 27th May 2011. Available from: .

Govindaswamy S, Vane L. 2007. Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Bioresource Technology, 98: 677-685.

Gunasekaran P, Chandra K. 1999. Ethanol fermentation technology-Zymomonas mobilis. Current Science, 77: 56-68.

Hammond J, Egg R, Diggins D, Cable C. 1996. Alcohol from bananas. Bioresource Technology, 56: 125-130.

Lei F, Rotboll M, Jorgensen SB. 2001. A biochemically structured model for Saccharomyces cerevisiae. Journal of Biotechnology, 88: 205-221.

Mackenzie K, Eddy C, Ingram L. 1989. Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc. Journal of Bacteriology, 171: 1063-1067.

Manikandan K, Saravanan V, Viruthagiri T. 2008. Kinetic studies on ethanol production from banana peel waste using mutant strain of Saccharomyces cerevisiae. Indian Journal Biotechnology, 7: 83-88.

MME (Ministerio de Minas y Energía) [Internet]. 2007. Los biocombustibles en Colombia [Internet]. 2007. Ministerio de Minas y Energía. Accessed: 7th August 2011. Available from: <http://www.minminas.gov.co/minminas/downloads/UserFiles/File/hidrocarburos/Programa.pdf>.

Monsalve J, Medina V, Ruíz A. 2006. Producción de etanol a partir de la cáscara de banano y de almidón de yuca. Revista Dyna, 150: 21-27.

Peña C, Arango R. 2009. Evaluación de la producción de etanol utilizando cepas recombinantes de Saccharomyces cerevisiae a partir de melaza de caña de azúcar. Revista DYNA, 76: 153-161.

Peña C, Arango RE, Restrepo LF. 2010. Efecto de adición de iones hierro y zinc sobre la producción de etanol de dos cepas recombinantes de Saccharomyces cerevisiae. Revista Colombiana de Biotecnología, 12: 158-168.

Pleassas S, Bekatorou A, Koutinas A, Soupioni M, Banat I, Marchant R. 2007. Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation. Bioresource Technology, 98: 860-865.

Sánchez O, Cardona C. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99: 5270-5295.

Sharma N, Kalra K, Oberoi H, Bansal S. 2007. Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation. Indian Journal Microbiology, 47: 310-316.

Soliclima. 2007. El etanol como biocombustible [Internet]. 2006. Soliclima energía solar. Accessed: 20th May 2011. Available from: <http://news.soliclima.com/divulgacion/biomasa/el-etanol-como-biocombustible>.

Thatipamala R, Rohani S, Hill GA. 1992. Effects of high product and substrate inhibition on the kinetics and biomass and products yields during ethanol batch fermentation. Biotechnology and bioengineering, 40: 289-297.

Vásquez J, Castaño H, Marín P, Rodriguez E, Arango R. 2007. Ingeniería genética en rutas metabólicas de Saccharomyces cerevisiae para incrementar la productividad de etanol. Memorias del Sexto Simposio Internacional de alcoholes y levaduras. de congreso.

Bogotá (Colombia).

Zhu S, Wu Y, Yu Z, Zhang X, Wang C, Yu F, Jin S. 2006. Production of ethanol from microwave-assisted alkali pretreated wheat straw. Process Biochemistry, 41: 869-873.

Published

2017-10-26

How to Cite

Peña-Serna, C., Castro-Gil, C., & Peláez-Jaramillo, C. A. (2017). Evaluation of ethanol production from two recombinant and a commercial strains of <i>Saccharomyces cerevisiae</i> (Fungi: Ascomycota) in sugar-cane molasses and rejected-banana juice from Urabá, Colombia. Actualidades Biológicas, 33(95), 183–192. https://doi.org/10.17533/udea.acbi.329228

Issue

Section

Full articles