Revitalizing therapies in autoimmune diseases: nanoparticles as alternative therapeutic tools
DOI:
https://doi.org/10.17533/udea.acbi/v47n122a06Keywords:
autoimmunity, B lymphocytes, immunomodulation, monocytes, macrophages, nanoparticlesAbstract
Autoimmune diseases, such as systemic lupus erythematosus (SLE), are complex disorders characterized by an abnormal immune response. In these diseases, the immune system mistakenly identifies different body components as foreign, leading to chronic inflammation and damage to multiple organ and tissue systems. Traditional treatments typically involve immunosuppressive drugs that broadly suppress the immune system. Although these medications can help control symptoms, they also carry significant side effects due to their nonspecific nature. Nanotechnology, through nanomedicine, plays a crucial role in treating diseases, improving drug therapeutic efficacy, and minimizing toxicity. This technology allows for better bioavailability of medications, more precise distribution in the body, and more precise control over drug release. Nanoparticles (NPs) are essential in this process, capable of overcoming biological barriers and directing drugs directly to the affected sites, increasing their effectiveness and reducing side effects. This approach is especially promising in treating autoimmune diseases and cancer. NPs can target specific cells, such as macrophages, monocytes, dendritic cells, and B lymphocytes, to deliver treatments more effectively, with less toxicity and adverse effects. Research in nanotechnology continues to advance, offering hope for more effective and personalized treatments.
Downloads
References
Alvarez, K., Palacio, J., Agudelo, N. A., Anacona, C. A., Castano, D., Vasquez, G. & Rojas, M. (2023). B cell-targeted polylactic acid nanoparticles as platform for encapsulating jakinibs: potential therapeutic strategy for systemic lupus erythematosus. Nanomedicine (Lond), 18(27), 2001-2019. https://doi.org/10.2217/nnm-2023-0241
Alvarez, K. & Rojas, M. (2023). Nanoparticles targeting monocytes and macrophages as diagnostic and therapeutic tools for autoimmune diseases. Heliyon, 9(9), e19861. https://doi.org/10.1016/j.heliyon.2023.e19861
An, E. K., Zhang, W., Park, H. B., Kim, S. J., Eom, H. Y., Hwang, J., Kwak, M., Lee, J. Y., Lee, P. C. & Jin, J. O. (2023). Immunosuppressive nanoparticles containing recombinant PD-L1 and methotrexate alleviate multi-organ inflammation. Biomaterials, 301, 122233. https://doi.org/10.1016/j.biomaterials.2023.122233
Brzezicka, K. A., Arlian, B. M., Wang, S., Olmer, M., Lotz, M. & Paulson, J. C. (2022). Suppression of autoimmune rheumatoid arthritis with hybrid nanoparticles that induce B and T cell tolerance to self-antigen. ACS Nano, 16(12), 20206-20221. https://doi.org/10.1021/acsnano.2c05643
Burbano, C., Vasquez, G. & Rojas, M. (2014). Modulatory effects of CD14+CD16++ monocytes on CD14++CD16- monocytes: a possible explanation of monocyte alterations in systemic lupus erythematosus. Arthritis Rheumatology, 66(12), 3371-3381. https://doi.org/10.1002/art.38860
Chandrashekara, S. (2012). The treatment strategies of autoimmune disease may need a different approach from conventional protocol: a review. Indian Journal Pharmacology, 44(6), 665-671. https://doi.org/10.4103/0253-7613.103235
Comi, G., Bar-Or, A., Lassmann, H., Uccelli, A., Hartung, H. P., Montalban, X., Sorensen, P. S., Hohlfeld, R., Hauser, S. L. & Expert Panel of the 27th Annual Meeting of the European Charcot, F. (2021). Role of B cells in multiple sclerosis and related disorders. Annals of Neurology, 89(1), 13-23. https://doi.org/10.1002/ana.25927
Faghani, G. & Azarniya, A. (2024). Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon, 10(21), e39611. https://doi.org/10.1016/j.heliyon.2024.e39611
Funauchi, M., Ohno, M., Minoda, M. & Horiuchi, A. (1993). Abnormal expression of intercellular adhesion molecule-1 on peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Journal of clinical & laboratory immunology, 40(3), 115-124. https://www.ncbi.nlm.nih.gov/pubmed/7877151
Gad, S. S., Fayez, A. M., Abdelaziz, M. & Abou El-Ezz, D. (2021). Amelioration of autoimmunity and inflammation by zinc oxide nanoparticles in experimental rheumatoid arthritis. Naunyn-Schmiedeberg's Archives of Pharmacology, 394(9), 1975-1981. https://doi.org/10.1007/s00210-021-02105-2
Galea, R., Nel, H. J., Talekar, M., Liu, X., Ooi, J. D., Huynh, M., Hadjigol, S., Robson, K. J., Ting, Y. T., Cole, S., Cochlin, K., Hitchcock, S., Zeng, B., Yekollu, S., Boks, M., Goh, N., Roberts, H., Rossjohn, J., Reid, H. H.,Thomas, R. (2019). PD-L1- and calcitriol-dependent liposomal antigen-specific regulation of systemic inflammatory autoimmune disease. JCI Insight, 4(18), e126025. https://doi.org/10.1172/jci.insight.126025
Ganguly, D., Haak, S., Sisirak, V. & Reizis, B. (2013). The role of dendritic cells in autoimmunity. Nature Review Immunology, 13(8), 566-577. https://doi.org/10.1038/nri3477
Garg, V. & Jusko, W. J. (1994). Bioavailability and reversible metabolism of prednisone and prednisolone in man. Biopharmaceutics and Drug Dispositio, 15(2), 163-172. https://doi.org/10.1002/bdd.2510150208
Ginhoux, F., Mildner, A., Gautier, E. L., Schlitzer, A., Jakubzick, C., Varol, C., Bain, C. & Guermonprez, P. (2020). Editorial: Monocyte Heterogeneity and Function. Frontiers in Immunology, 11, 626725. https://doi.org/10.3389/fimmu.2020.626725
Hampe, C. S. (2012). B Cell in autoimmune diseases. Scientifica (Cairo), 2012. https://doi.org/10.6064/2012/215308
Horwitz, D. A., Bickerton, S., Koss, M., Fahmy, T. M. & La Cava, A. (2019). Suppression of murine lupus by CD4+ and CD8+ Treg cells induced by T cell-targeted nanoparticles loaded with Interleukin-2 and transforming growth factor beta. Arthritis and Rheumatoly, 71(4), 632-640. https://doi.org/10.1002/art.40773
Huang, Y., Guo, X., Wu, Y., Chen, X., Feng, L., Xie, N. & Shen, G. (2024). Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduction and Targeted Therapy, 9(1), 34. https://doi.org/10.1038/s41392-024-01745-z
Joseph, A., Baslet, G., O'Neal, M. A., Polich, G., Gonsalvez, I., Christoforou, A. N., Dworetzky, B. A. & Spagnolo, P. A. (2024). Prevalence of autoimmune diseases in functional neurological disorder: influence of psychiatric comorbidities and biological sex. Journal of Neurology, Neurosurgery and Psychiatry, 95, 865-869. https://doi.org/10.1136/jnnp-2023-332825
Kumar, P., Saini, S., Khan, S., Surendra Lele, S. & Prabhakar, B. S. (2019). Restoring self-tolerance in autoimmune diseases by enhancing regulatory T-cells. Cellular Immunology, 339, 41-49. https://doi.org/10.1016/j.cellimm.2018.09.008
Lee, N. K., Kim, S. N. & Park, C. G. (2021). Immune cell targeting nanoparticles: a review. Biomaterials Reserach, 25(1), 44. https://doi.org/10.1186/s40824-021-00246-2
Lemos, H., Huang, L., McGaha, T. & Mellor, A. L. (2015). STING, nanoparticles, autoimmune disease and cancer: a novel paradigm for immunotherapy? Expert Review of Clinical Immunology, 11(1), 155-165. https://doi.org/10.1586/1744666X.2015.995097
Li, H., Yang, Y. G. & Sun, T. (2022). Nanoparticle-based drug delivery systems for induction of tolerance and teatment of autoimmune diseases. Frontiers of Bioengineering and Biotechnology, 10, 889291. https://doi.org/10.3389/fbioe.2022.889291
Londoño, J., Peláez Ballestas, I., Cuervo, F., Angarita, I., Giraldo, R., Rueda, J. C., Ballesteros, J. G., Baquero, R., Forero, E., Cardiel, M., Saldarriaga, E., Vásquez, A., Arias, S., Valero, L., González, C., Ramírez, J., Toro, C. & Santos, A. M. (2018). Prevalencia de la enfermedad reumática en Colombia, según estrategia COPCORD-Asociación Colombiana de Reumatología. Estudio de prevalencia de enfermedad reumática en población colombiana mayor de 18 años. Revista Colombiana de Reumatología, 25(4), 245-256. https://doi.org/10.1016/j.rcreu.2018.08.003
Marco-Dufort, B., Willi, J., Vielba-Gomez, F., Gatti, F. & Tibbitt, M. W. (2021). Environment controls biomolecule release from dynamic covalent hydrogels. Biomacromolecules, 22(1), 146-157. https://doi.org/10.1021/acs.biomac.0c00895
Medina-Ramirez, S. A., Soriano-Moreno, D. R., Tuco, K. G., Castro-Diaz, S. D., Alvarado-Villacorta, R., Pacheco-Mendoza, J. & Yovera-Aldana, M. (2024). Prevalence and incidence of diabetic retinopathy in patients with diabetes of Latin America and the Caribbean: A systematic review and meta-analysis. PLoS One, 19(4), e0296998. https://doi.org/10.1371/journal.pone.0296998
Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. (2013). The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual Review of Immunology, 31, 563-604. https://doi.org/10.1146/annurev-immunol-020711-074950
Mitarotonda, R., Giorgi, E., Eufrasio-da-Silva, T., Dolatshahi-Pirouz, A., Mishra, Y. K., Khademhosseini, A., Desimone, M. F., De Marzi, M. & Orive, G. (2022). Immunotherapeutic nanoparticles: From autoimmune disease control to the development of vaccines. Biomaterials Advances, 135, 212726. https://doi.org/10.1016/j.bioadv.2022.212726
Nashi, E., Wang, Y. & Diamond, B. (2010). The role of B cells in lupus pathogenesis. The International Journal of Biochemistry & Cell Biology, 42(4), 543-550. https://doi.org/10.1016/j.biocel.2009.10.011
Quintana, F. J. (2013). Nanoparticles for the induction of antigen-specific Tregs. Immunotherapy, 5(5), 437-440. https://doi.org/10.2217/imt.13.25
Sethulekshmi, A. S., Saritha, A., Joseph, K., Aprem, A. S. & Sisupal, S. B. (2022). MoS(2) based nanomaterials: Advanced antibacterial agents for future. Journal of Controlled Release, 348, 158-185. https://doi.org/10.1016/j.jconrel.2022.05.047
Silverman, G. J. & Carson, D. A. (2003). Roles of B cells in rheumatoid arthritis. Arthritis Research & Therapy, 5(Suppl 4), S1-6. https://doi.org/10.1186/ar1010
Sivamaruthi, Bhagavathi & Nallasamy, Prakash & Sivakumar, Suganthy & Kesika, Periyanaina & Chaiyasut, Chaiyavat. (2022). Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. Journal of Drug Delivery Science and Technology, 77, 103890-103899. https://doi.org/10.1016/j.jddst.2022.103890
Smiljanovic, B., Radzikowska, A., Kuca-Warnawin, E., Kurowska, W., Grun, J. R., Stuhlmuller, B., Bonin, M., Schulte-Wrede, U., Sorensen, T., Kyogoku, C., Bruns, A., Hermann, S., Ohrndorf, S., Aupperle, K., Backhaus, M., Burmester, G. R., Radbruch, A., Grutzkau, A., Maslinski, W. & Haupl, T. (2018). Monocyte alterations in rheumatoid arthritis are dominated by preterm release from bone marrow and prominent triggering in the joint. Annals of the Rheumatic Diseases, 77(2), 300-308. https://doi.org/10.1136/annrheumdis-2017-211649
Smolensky, M. H. & Peppas, N. A. (2007). Chronobiology, drug delivery, and chronotherapeutics. Advanced Drug Delivery Reviews, 59(9-10), 828-851. https://doi.org/10.1016/j.addr.2007.07.001
Tsai, S., Shameli, A., Yamanouchi, J., Clemente-Casares, X., Wang, J., Serra, P., Yang, Y., Medarova, Z., Moore, A. & Santamaria, P. (2010). Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity, 32(4), 568-580. https://doi.org/10.1016/j.immuni.2010.03.015
Wang, H. F., Wang, Y. Y., Li, Z. Y., He, P. J., Liu, S. & Li, Q. S. (2024). The prevalence and risk factors of rheumatoid arthritis-associated interstitial lung disease: a systematic review and meta-analysis. Annals of Medicine, 56(1), 2332406. https://doi.org/10.1080/07853890.2024.2332406
Wang, J., Yang, J. & Kopecek, J. (2022). Nanomedicines in B cell-targeting therapies. Acta Biomaterialia, 137, 1-19. https://doi.org/10.1016/j.actbio.2021.10.024
Wu, Z., Zhang, S., Zhao, L., Fei, Y., Wang, L., Li, J., Wen, X., Zeng, X., Zhang, F. & Li, Y. (2017). Upregulation of CD16- monocyte subsets in systemic lupus erythematous patients. Clinical Rheumatoly, 36(10), 2281-2287. https://doi.org/10.1007/s10067-017-3787-2
Yang, Y. & Santamaria, P. (2021). Evolution of nanomedicines for the treatment of autoimmune disease: From vehicles for drug delivery to inducers of bystander immunoregulation. Advanced Drug Delivery Reviews, 176, 113898. https://doi.org/10.1016/j.addr.2021.113898
Yap, D. Y. H. & Chan, T. M. (2019). B Cell Abnormalities in Systemic Lupus Erythematosus and Lupus Nephritis-Role in Pathogenesis and Effect of Immunosuppressive Treatments. International Journal of molecular science, 20(24), 6231-6249. https://doi.org/10.3390/ijms20246231
Zhu, J., Chen, W., Sun, Y., Huang, X., Chu, R., Wang, R., Zhou, D. & Ye, S. (2022). Recent advances on drug delivery nanoplatforms for the treatment of autoimmune inflammatory diseases. Materials Advances, 3(21), 7687-7708. https://doi.org/10.1039/d2ma00814a
Zolnik, B. S., Gonzalez-Fernandez, A., Sadrieh, N. & Dobrovolskaia, M. A. (2010). Nanoparticles and the immune system. Endocrinology, 151(2), 458-465. https://doi.org/10.1210/en.2009-1082
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Actualidades Biológicas
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors exclusively authorize the Actualidades Biológicas journal to edit and publish the submitted manuscript if its publication is recommended and accepted, without this representing any cost to the Journal or the University of Antioquia.
All the ideas and opinions contained in the articles are sole responsibility of the authors. The total content of the issues or supplements of the journal is protected under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, so they cannot be used for commercial purposes, but for educational purposes. However, please mention the Actualidades Biológicas journal as a source and send a copy of the publication in which the content was reproduced.