Revitalizing therapies in autoimmune diseases: nanoparticles as alternative therapeutic tools

Authors

DOI:

https://doi.org/10.17533/udea.acbi/v47n122a06

Keywords:

autoimmunity, B lymphocytes, immunomodulation, monocytes, macrophages, nanoparticles

Abstract

Autoimmune diseases, such as systemic lupus erythematosus (SLE), are complex disorders characterized by an abnormal immune response. In these diseases, the immune system mistakenly identifies different body components as foreign, leading to chronic inflammation and damage to multiple organ and tissue systems. Traditional treatments typically involve immunosuppressive drugs that broadly suppress the immune system. Although these medications can help control symptoms, they also carry significant side effects due to their nonspecific nature. Nanotechnology, through nanomedicine, plays a crucial role in treating diseases, improving drug therapeutic efficacy, and minimizing toxicity. This technology allows for better bioavailability of medications, more precise distribution in the body, and more precise control over drug release. Nanoparticles (NPs) are essential in this process, capable of overcoming biological barriers and directing drugs directly to the affected sites, increasing their effectiveness and reducing side effects. This approach is especially promising in treating autoimmune diseases and cancer. NPs can target specific cells, such as macrophages, monocytes, dendritic cells, and B lymphocytes, to deliver treatments more effectively, with less toxicity and adverse effects. Research in nanotechnology continues to advance, offering hope for more effective and personalized treatments.

|Abstract
= 24 veces | PDF
= 12 veces| | PDF (ESPAÑOL (ESPAÑA))
= 12 veces| | EPUB
= 3 veces| | GRAPHICAL ABSTRACT
= 1 veces| | RESUMEN GRÁFICO (ESPAÑOL (ESPAÑA))
= 0 veces|

Downloads

Download data is not yet available.

Author Biographies

Karen Álvarez, Antioquia University

Biologist,

MsC in Immunology

PhD Candidate

Occasional lecturer at the Institute of Medical Research

Mauricio Rojas , Antioquia University

Professor,

Institute of Medical Research

School of Medicine

References

Alvarez, K., Palacio, J., Agudelo, N. A., Anacona, C. A., Castano, D., Vasquez, G. & Rojas, M. (2023). B cell-targeted polylactic acid nanoparticles as platform for encapsulating jakinibs: potential therapeutic strategy for systemic lupus erythematosus. Nanomedicine (Lond), 18(27), 2001-2019. https://doi.org/10.2217/nnm-2023-0241

Alvarez, K. & Rojas, M. (2023). Nanoparticles targeting monocytes and macrophages as diagnostic and therapeutic tools for autoimmune diseases. Heliyon, 9(9), e19861. https://doi.org/10.1016/j.heliyon.2023.e19861

An, E. K., Zhang, W., Park, H. B., Kim, S. J., Eom, H. Y., Hwang, J., Kwak, M., Lee, J. Y., Lee, P. C. & Jin, J. O. (2023). Immunosuppressive nanoparticles containing recombinant PD-L1 and methotrexate alleviate multi-organ inflammation. Biomaterials, 301, 122233. https://doi.org/10.1016/j.biomaterials.2023.122233

Brzezicka, K. A., Arlian, B. M., Wang, S., Olmer, M., Lotz, M. & Paulson, J. C. (2022). Suppression of autoimmune rheumatoid arthritis with hybrid nanoparticles that induce B and T cell tolerance to self-antigen. ACS Nano, 16(12), 20206-20221. https://doi.org/10.1021/acsnano.2c05643

Burbano, C., Vasquez, G. & Rojas, M. (2014). Modulatory effects of CD14+CD16++ monocytes on CD14++CD16- monocytes: a possible explanation of monocyte alterations in systemic lupus erythematosus. Arthritis Rheumatology, 66(12), 3371-3381. https://doi.org/10.1002/art.38860

Chandrashekara, S. (2012). The treatment strategies of autoimmune disease may need a different approach from conventional protocol: a review. Indian Journal Pharmacology, 44(6), 665-671. https://doi.org/10.4103/0253-7613.103235

Comi, G., Bar-Or, A., Lassmann, H., Uccelli, A., Hartung, H. P., Montalban, X., Sorensen, P. S., Hohlfeld, R., Hauser, S. L. & Expert Panel of the 27th Annual Meeting of the European Charcot, F. (2021). Role of B cells in multiple sclerosis and related disorders. Annals of Neurology, 89(1), 13-23. https://doi.org/10.1002/ana.25927

Faghani, G. & Azarniya, A. (2024). Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon, 10(21), e39611. https://doi.org/10.1016/j.heliyon.2024.e39611

Funauchi, M., Ohno, M., Minoda, M. & Horiuchi, A. (1993). Abnormal expression of intercellular adhesion molecule-1 on peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Journal of clinical & laboratory immunology, 40(3), 115-124. https://www.ncbi.nlm.nih.gov/pubmed/7877151

Gad, S. S., Fayez, A. M., Abdelaziz, M. & Abou El-Ezz, D. (2021). Amelioration of autoimmunity and inflammation by zinc oxide nanoparticles in experimental rheumatoid arthritis. Naunyn-Schmiedeberg's Archives of Pharmacology, 394(9), 1975-1981. https://doi.org/10.1007/s00210-021-02105-2

Galea, R., Nel, H. J., Talekar, M., Liu, X., Ooi, J. D., Huynh, M., Hadjigol, S., Robson, K. J., Ting, Y. T., Cole, S., Cochlin, K., Hitchcock, S., Zeng, B., Yekollu, S., Boks, M., Goh, N., Roberts, H., Rossjohn, J., Reid, H. H.,Thomas, R. (2019). PD-L1- and calcitriol-dependent liposomal antigen-specific regulation of systemic inflammatory autoimmune disease. JCI Insight, 4(18), e126025. https://doi.org/10.1172/jci.insight.126025

Ganguly, D., Haak, S., Sisirak, V. & Reizis, B. (2013). The role of dendritic cells in autoimmunity. Nature Review Immunology, 13(8), 566-577. https://doi.org/10.1038/nri3477

Garg, V. & Jusko, W. J. (1994). Bioavailability and reversible metabolism of prednisone and prednisolone in man. Biopharmaceutics and Drug Dispositio, 15(2), 163-172. https://doi.org/10.1002/bdd.2510150208

Ginhoux, F., Mildner, A., Gautier, E. L., Schlitzer, A., Jakubzick, C., Varol, C., Bain, C. & Guermonprez, P. (2020). Editorial: Monocyte Heterogeneity and Function. Frontiers in Immunology, 11, 626725. https://doi.org/10.3389/fimmu.2020.626725

Hampe, C. S. (2012). B Cell in autoimmune diseases. Scientifica (Cairo), 2012. https://doi.org/10.6064/2012/215308

Horwitz, D. A., Bickerton, S., Koss, M., Fahmy, T. M. & La Cava, A. (2019). Suppression of murine lupus by CD4+ and CD8+ Treg cells induced by T cell-targeted nanoparticles loaded with Interleukin-2 and transforming growth factor beta. Arthritis and Rheumatoly, 71(4), 632-640. https://doi.org/10.1002/art.40773

Huang, Y., Guo, X., Wu, Y., Chen, X., Feng, L., Xie, N. & Shen, G. (2024). Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduction and Targeted Therapy, 9(1), 34. https://doi.org/10.1038/s41392-024-01745-z

Joseph, A., Baslet, G., O'Neal, M. A., Polich, G., Gonsalvez, I., Christoforou, A. N., Dworetzky, B. A. & Spagnolo, P. A. (2024). Prevalence of autoimmune diseases in functional neurological disorder: influence of psychiatric comorbidities and biological sex. Journal of Neurology, Neurosurgery and Psychiatry, 95, 865-869. https://doi.org/10.1136/jnnp-2023-332825

Kumar, P., Saini, S., Khan, S., Surendra Lele, S. & Prabhakar, B. S. (2019). Restoring self-tolerance in autoimmune diseases by enhancing regulatory T-cells. Cellular Immunology, 339, 41-49. https://doi.org/10.1016/j.cellimm.2018.09.008

Lee, N. K., Kim, S. N. & Park, C. G. (2021). Immune cell targeting nanoparticles: a review. Biomaterials Reserach, 25(1), 44. https://doi.org/10.1186/s40824-021-00246-2

Lemos, H., Huang, L., McGaha, T. & Mellor, A. L. (2015). STING, nanoparticles, autoimmune disease and cancer: a novel paradigm for immunotherapy? Expert Review of Clinical Immunology, 11(1), 155-165. https://doi.org/10.1586/1744666X.2015.995097

Li, H., Yang, Y. G. & Sun, T. (2022). Nanoparticle-based drug delivery systems for induction of tolerance and teatment of autoimmune diseases. Frontiers of Bioengineering and Biotechnology, 10, 889291. https://doi.org/10.3389/fbioe.2022.889291

Londoño, J., Peláez Ballestas, I., Cuervo, F., Angarita, I., Giraldo, R., Rueda, J. C., Ballesteros, J. G., Baquero, R., Forero, E., Cardiel, M., Saldarriaga, E., Vásquez, A., Arias, S., Valero, L., González, C., Ramírez, J., Toro, C. & Santos, A. M. (2018). Prevalencia de la enfermedad reumática en Colombia, según estrategia COPCORD-Asociación Colombiana de Reumatología. Estudio de prevalencia de enfermedad reumática en población colombiana mayor de 18 años. Revista Colombiana de Reumatología, 25(4), 245-256. https://doi.org/10.1016/j.rcreu.2018.08.003

Marco-Dufort, B., Willi, J., Vielba-Gomez, F., Gatti, F. & Tibbitt, M. W. (2021). Environment controls biomolecule release from dynamic covalent hydrogels. Biomacromolecules, 22(1), 146-157. https://doi.org/10.1021/acs.biomac.0c00895

Medina-Ramirez, S. A., Soriano-Moreno, D. R., Tuco, K. G., Castro-Diaz, S. D., Alvarado-Villacorta, R., Pacheco-Mendoza, J. & Yovera-Aldana, M. (2024). Prevalence and incidence of diabetic retinopathy in patients with diabetes of Latin America and the Caribbean: A systematic review and meta-analysis. PLoS One, 19(4), e0296998. https://doi.org/10.1371/journal.pone.0296998

Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. (2013). The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual Review of Immunology, 31, 563-604. https://doi.org/10.1146/annurev-immunol-020711-074950

Mitarotonda, R., Giorgi, E., Eufrasio-da-Silva, T., Dolatshahi-Pirouz, A., Mishra, Y. K., Khademhosseini, A., Desimone, M. F., De Marzi, M. & Orive, G. (2022). Immunotherapeutic nanoparticles: From autoimmune disease control to the development of vaccines. Biomaterials Advances, 135, 212726. https://doi.org/10.1016/j.bioadv.2022.212726

Nashi, E., Wang, Y. & Diamond, B. (2010). The role of B cells in lupus pathogenesis. The International Journal of Biochemistry & Cell Biology, 42(4), 543-550. https://doi.org/10.1016/j.biocel.2009.10.011

Quintana, F. J. (2013). Nanoparticles for the induction of antigen-specific Tregs. Immunotherapy, 5(5), 437-440. https://doi.org/10.2217/imt.13.25

Sethulekshmi, A. S., Saritha, A., Joseph, K., Aprem, A. S. & Sisupal, S. B. (2022). MoS(2) based nanomaterials: Advanced antibacterial agents for future. Journal of Controlled Release, 348, 158-185. https://doi.org/10.1016/j.jconrel.2022.05.047

Silverman, G. J. & Carson, D. A. (2003). Roles of B cells in rheumatoid arthritis. Arthritis Research & Therapy, 5(Suppl 4), S1-6. https://doi.org/10.1186/ar1010

Sivamaruthi, Bhagavathi & Nallasamy, Prakash & Sivakumar, Suganthy & Kesika, Periyanaina & Chaiyasut, Chaiyavat. (2022). Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. Journal of Drug Delivery Science and Technology, 77, 103890-103899. https://doi.org/10.1016/j.jddst.2022.103890

Smiljanovic, B., Radzikowska, A., Kuca-Warnawin, E., Kurowska, W., Grun, J. R., Stuhlmuller, B., Bonin, M., Schulte-Wrede, U., Sorensen, T., Kyogoku, C., Bruns, A., Hermann, S., Ohrndorf, S., Aupperle, K., Backhaus, M., Burmester, G. R., Radbruch, A., Grutzkau, A., Maslinski, W. & Haupl, T. (2018). Monocyte alterations in rheumatoid arthritis are dominated by preterm release from bone marrow and prominent triggering in the joint. Annals of the Rheumatic Diseases, 77(2), 300-308. https://doi.org/10.1136/annrheumdis-2017-211649

Smolensky, M. H. & Peppas, N. A. (2007). Chronobiology, drug delivery, and chronotherapeutics. Advanced Drug Delivery Reviews, 59(9-10), 828-851. https://doi.org/10.1016/j.addr.2007.07.001

Tsai, S., Shameli, A., Yamanouchi, J., Clemente-Casares, X., Wang, J., Serra, P., Yang, Y., Medarova, Z., Moore, A. & Santamaria, P. (2010). Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity, 32(4), 568-580. https://doi.org/10.1016/j.immuni.2010.03.015

Wang, H. F., Wang, Y. Y., Li, Z. Y., He, P. J., Liu, S. & Li, Q. S. (2024). The prevalence and risk factors of rheumatoid arthritis-associated interstitial lung disease: a systematic review and meta-analysis. Annals of Medicine, 56(1), 2332406. https://doi.org/10.1080/07853890.2024.2332406

Wang, J., Yang, J. & Kopecek, J. (2022). Nanomedicines in B cell-targeting therapies. Acta Biomaterialia, 137, 1-19. https://doi.org/10.1016/j.actbio.2021.10.024

Wu, Z., Zhang, S., Zhao, L., Fei, Y., Wang, L., Li, J., Wen, X., Zeng, X., Zhang, F. & Li, Y. (2017). Upregulation of CD16- monocyte subsets in systemic lupus erythematous patients. Clinical Rheumatoly, 36(10), 2281-2287. https://doi.org/10.1007/s10067-017-3787-2

Yang, Y. & Santamaria, P. (2021). Evolution of nanomedicines for the treatment of autoimmune disease: From vehicles for drug delivery to inducers of bystander immunoregulation. Advanced Drug Delivery Reviews, 176, 113898. https://doi.org/10.1016/j.addr.2021.113898

Yap, D. Y. H. & Chan, T. M. (2019). B Cell Abnormalities in Systemic Lupus Erythematosus and Lupus Nephritis-Role in Pathogenesis and Effect of Immunosuppressive Treatments. International Journal of molecular science, 20(24), 6231-6249. https://doi.org/10.3390/ijms20246231

Zhu, J., Chen, W., Sun, Y., Huang, X., Chu, R., Wang, R., Zhou, D. & Ye, S. (2022). Recent advances on drug delivery nanoplatforms for the treatment of autoimmune inflammatory diseases. Materials Advances, 3(21), 7687-7708. https://doi.org/10.1039/d2ma00814a

Zolnik, B. S., Gonzalez-Fernandez, A., Sadrieh, N. & Dobrovolskaia, M. A. (2010). Nanoparticles and the immune system. Endocrinology, 151(2), 458-465. https://doi.org/10.1210/en.2009-1082

Published

2024-12-27

How to Cite

Álvarez, K., & Rojas , M. (2024). Revitalizing therapies in autoimmune diseases: nanoparticles as alternative therapeutic tools. Actualidades Biológicas, 47(122), e4706. https://doi.org/10.17533/udea.acbi/v47n122a06

Issue

Section

Review articles