Antimicrobial resistance profile of clinical isolates of Clostridium, Paeniclostridium and Paraclostridium spp. (2015–2020)
DOI:
https://doi.org/10.17533/udea.hm.v16n2a02Keywords:
Anaerobic bacteria, Antimicrobial resistance, antibiotic, Clostridium, Paraclostridium, PaeniclostridiumAbstract
Background: The genera Clostridium, Paraclostridium, and Paeniclostridium comprise Gram-positive, spore-forming, anaerobic bacteria widely distributed in the environment and human microbiota. Their ability to produce a broad range of toxins and their frequent exposure to antimicrobials confer high clinical relevance in diverse infections. Objective: To analyze resistance profiles to 11 antimicrobials in clinical isolates of these genera. Methods: A search and review of articles published in the period 2015-2020 in PubMed was carried out. Results: The highest resistance was observed against moxifloxacin, while tigecycline showed the lowest. Isolates with the highest resistance levels were mainly derived from traumatic wounds and bacteremia. A consistent finding was the comparatively lower resistance of C. perfringens compared to other species. Conversely, a C. innocuum strain exhibited a multidrug-resistant profile, with resistance to penicillin, clindamycin, and amoxicillin-clavulanic acid, in addition to its intrinsic resistance to vancomycin. Conclusion: These findings highlight the importance of active and continuous surveillance of antimicrobial resistance profiles in anaerobic bacteria, especially since such analyses are not routinely performed in clinical laboratories.
Downloads
References
[1] Dürre P. Physiology and sporulation in Clostridium. Microbiol Spectr. 2014;2(4):10-128. https://doi.org/10.1128/microbiolspec.tbs-0010-2012
[2] Jyothsna TS, Tushar L, Sasikala C, Ramana C. Paraclostridium benzoelyticum gen. nov., sp. nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb. nov. Proposal of a new genus Paeniclostridium gen. nov. to accommodate Clostridium. Int J Syst Evol Microbiol. 2016;66(3):1268–1274. https://doi.org/10.1099/ijsem.0.000874
[3] Lawson PA, Saavedra Perez L, Sankaranarayanan K. Reclassification of Clostridium cocleatum, Clostridium ramosum, Clostridium spiroforme and Clostridium saccharogumia as Thomasclavelia cocleata gen. nov., comb. nov., Thomasclavelia ramosa gen. nov., comb. nov., Thomasclavelia spiroformis gen. nov., comb. nov. and Thomasclavelia saccharogumia gen. nov., comb. nov. Int J Syst Evol Microbiol. 2023;73(1):005694. https://doi.org/10.1099/ijsem.0.005694
[4] Lawson PA, Rainey FA. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. Int J Syst Evol Microbiol. 2016;66(2):1009–1016. https://doi.org/10.1099/ijsem.0.000824
[5] Nagahama M, Takehara M, Rood JI. Histotoxic clostridial infections. Microbiol Spectr. 2019;7(4):10-128. https://doi.org/10.1128/microbiolspec.gpp3-0024-2018
[6] Mehdizadeh Gohari I, Navarro MA, Li J, Shrestha A, Uzal FA, McClane BA. Pathogenicity and virulence of Clostridium perfringens. Virulence. 2021;12(1):723–753. https://doi.org/10.1080/21505594.2021.1886777
[7] Aronoff DM. Clostridium novyi, Clostridium sordellii, and Clostridium tetani: mechanisms of disease. Anaerobe. 2013;24:98–101. https://doi.org/10.1016/j.anaerobe.2013.08.009
[8] Stevens DL, Aldape MJ, Bryant AE. Life-threatening clostridial infections. Anaerobe. 2012;18(2):254–259. https://doi.org/10.1016/j.anaerobe.2011.11.001
[9] Kim H, Seo H, Park S, Chung H, Sung H, Kim MN, et al. Clinical significance and outcomes of Clostridium tertium bacteremia: analysis of 62 cases in neutropenic and non-neutropenic patients. Eur J Clin Microbiol Infect Dis. 2023;42(2):183–191. https://doi.org/10.1007/s10096-022-04536-y
[10] Chia JH, Feng Y, Su LH, Wu TL, Chen CL, Liang YH, et al. Clostridium innocuum is a significant vancomycin-resistant pathogen for extraintestinal clostridial infection. Clin Microbiol Infect. 2017;23(8):560–566. https://doi.org/10.1016/j.cmi.2017.02.025
[11] Fu Y, Alenezi T, Sun X. Clostridium perfringens-induced necrotic diseases: an overview. Immuno. 2022;2(2):387–407. https://doi.org/10.3390/immuno2020024
[12] Clinical and Laboratory Standards Institute. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, 9th Ed. CLSI document M11. 2018.
[13] Gajdács M, Spengler G, Urbán E. Identification and antimicrobial susceptibility testing of anaerobic bacteria: Rubik’s cube of clinical microbiology?. Antibiotics. 2017;6(4):25. https://doi.org/10.3390/antibiotics6040025
[14] Akhi MT, Ghotaslou R, Beheshtirouy S, Asgharzadeh M, Pirzadeh T, Asghari B, et al. Antibiotic susceptibility pattern of aerobic and anaerobic bacteria isolated from surgical site infection of hospitalized patients. Jundishapur J Microbiol. 2015;8(7):e20309. https://doi.org/10.5812/jjm.20309v2
[15] Handal N, Bakken Jørgensen S, Smith Tunsjø H, Johnsen BO, Leegaard TM. Anaerobic blood culture isolates in a Norwegian university hospital: identification by MALDI-TOF MS vs 16S rRNA sequencing and antimicrobial susceptibility profiles. APMIS. 2015;123(9):749–758. https://doi.org/10.1111/apm.12410
[16] Ng LS, Kwang LL, Rao S, Tan TY. Anaerobic bacteraemia revisited: species and susceptibilities. Ann Acad Med Singap. 2015;44(1):13–18.
[17] Novak A, Rubic Z, Dogas V, Goic-Barisic I, Radic M, Tonkic M. Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a University Hospital Centre Split, Croatia in 2013. Anaerobe. 2015;31:31–36. https://doi.org/10.1016/j.anaerobe.2014.10.010
[18] Haldar J, Mukherjee P, Mukhopadhyay S, Maiti PK. Isolation of bacteria from diabetic foot ulcers with special reference to anaerobe isolation by simple two-step combustion technique in candle jar. Indian J Med Res. 2017;145(1):97–101. https://doi.org/10.4103/ijmr.IJMR_1436_14
[19] Jeverica S, Kolenc U, Mueller-Premru M, Papst L. Evaluation of the routine antimicrobial susceptibility testing results of clinically significant anaerobic bacteria in a Slovenian tertiary-care hospital in 2015. Anaerobe. 2017;47:64–69. https://doi.org/10.1016/j.anaerobe.2017.04.007
[20] Tan TY, Ng LS, Kwang LL, Rao S, Eng LC. Clinical characteristics and antimicrobial susceptibilities of anaerobic bacteremia in an acute care hospital. Anaerobe. 2017;43:69–74. https://doi.org/10.1016/j.anaerobe.2016.11.009
[21] Raja NS. Epidemiology and antimicrobial susceptibility of anaerobic bloodstream infections: a 10 years study. J Microbiol Infect Dis. 2018;8(4):135–139. https://doi.org/10.5799/jmid.493845
[22] Rodloff AC, Dowzicky MJ. In vitro activity of tigecycline and comparators against a European collection of anaerobes collected as part of the Tigecycline Evaluation and Surveillance Trial (TEST) 2010–2016. Anaerobe. 2018;51:78–88. https://doi.org/10.1016/j.anaerobe.2018.04.009
[23] Byun JH, Kim M, Lee Y, Lee K, Chong Y. Antimicrobial susceptibility patterns of anaerobic bacterial clinical isolates from 2014 to 2016, including recently named or renamed species. Ann Lab Med. 2019;39(2):190–197. https://doi.org/10.3343/alm.2019.39.2.190
[24] Cobo F, Rodríguez-Granger J, Pérez-Zapata I, Sampedro A, Aliaga L, Navarro-Marí JM. Antimicrobial susceptibility and clinical findings of significant anaerobic bacteria in southern Spain. Anaerobe. 2019;59:49–53. https://doi.org/10.1016/j.anaerobe.2019.05.007
[25] Badr MT, Blümel B, Baumgartner S, Komp JM, Häcker G. Antimicrobial susceptibility patterns and wild-type MIC distributions of anaerobic bacteria at a German University Hospital: a five-year retrospective study (2015–2019). Antibiotics. 2020;9(11):823. https://doi.org/10.3390/antibiotics9110823
[26] Goh TC, Bajuri MY, Nadarajah SC, Abdul Rashid AH, Baharuddin S, Zamri KS. Clinical and bacteriological profile of diabetic foot infections in a tertiary care. J Foot Ankle Res. 2020;13:1–8. https://doi.org/10.1186/s13047-020-00406-y
[27] Ishak N, Wahab ZA, Nordin SA, Ibrahim R. Susceptibility patterns of anaerobes isolated from clinical specimens in tertiary Hospital, Malaysia. Malays J Pathol. 2020;42(2):245–252.
[28] Maraki S, Mavromanolaki VE, Stafylaki D, Kasimati A. Antimicrobial susceptibility patterns of clinically significant Gram-positive anaerobic bacteria in a Greek tertiary-care hospital, 2017–2019. Anaerobe. 2020;64:102245. https://doi.org/10.1016/j.anaerobe.2020.102245
[29] Sárvári KP, Schoblocher D. The antibiotic susceptibility pattern of gas gangrene-forming Clostridium spp. clinical isolates from South-Eastern Hungary. Infect Dis. 2020;52(3):196–201. https://doi.org/10.1080/23744235.2019.1696472
[30] Veloo AC, Tokman HB, Jean-Pierre H, Dumont Y, Jeverica S, Lienhard R, et al. Antimicrobial susceptibility profiles of anaerobic bacteria, isolated from human clinical specimens, within different European and surrounding countries. A joint ESGAI study. Anaerobe. 2020;61:102111. https://doi.org/10.1016/j.anaerobe.2019.102111
[31] Veloo AC, van Winkelhoff AJ. Antibiotic susceptibility profiles of anaerobic pathogens in The Netherlands. Anaerobe. 2015;31:19–24. https://doi.org/10.1016/j.anaerobe.2014.08.011
[32] Sheikh SO, Jabeen K, Qaiser S, Ahsan ST, Khan E, Zafar A. High rate of non-susceptibility to metronidazole and clindamycin in anaerobic isolates: data from a clinical laboratory from Karachi, Pakistan. Anaerobe. 2015;33:132–136. https://doi.org/10.1016/j.anaerobe.2015.03.006
[33] Yunoki T, Matsumura Y, Nakano S, Kato K, Hotta G, Noguchi T, et al. Genetic, phenotypic and matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based identification of anaerobic bacteria and determination of their antimicrobial susceptibility at a University Hospital in Japan. J Infect Chemother. 2016;22(5):303–307. https://doi.org/10.1016/j.jiac.2016.01.014
[34] Yunoki T, Matsumura Y, Yamamoto M, Tanaka M, Hamano K, Nakano S, et al. Genetic identification and antimicrobial susceptibility of clinically isolated anaerobic bacteria: a prospective multicenter surveillance study in Japan. Anaerobe. 2017;48:215–223. https://doi.org/10.1016/j.anaerobe.2017.09.003
[35] Lee Y, Park YJ, Kim MN, Uh Y, Kim MS, Lee K. Multicenter study of antimicrobial susceptibility of anaerobic bacteria in Korea in 2012. Ann Lab Med. 2015;35(5):479–486. https://doi.org/10.3343/alm.2015.35.5.479
[36] White BK, Mende K, Weintrob AC, Beckius ML, Zera WC, Lu D, et al. Epidemiology and antimicrobial susceptibilities of wound isolates of obligate anaerobes from combat casualties. Diagn Microbiol Infect Dis. 2016;84(2):144–150. https://doi.org/10.1016/j.diagmicrobio.2015.10.010
[37] Snydman DR, McDermott LA, Jacobus NV, Kerstein K, Grossman TH, Sutcliffe JA. Evaluation of the in vitro activity of eravacycline against a broad spectrum of recent clinical anaerobic isolates. Antimicrob Agents Chemother. 2018;62(5):e02206-17. https://doi.org/10.1128/AAC.02206-17
[38] Umemura T, Hamada Y, Yamagishi Y, Suematsu H, Mikamo H. Clinical characteristics associated with mortality of patients with anaerobic bacteremia. Anaerobe. 2016;39:45–50. https://doi.org/10.1016/j.anaerobe.2016.02.007
[39] Cobo F, Borrego J, Gómez E, Casanovas I, Calatrava E, Foronda C, et al. Clinical findings and antimicrobial susceptibility of anaerobic bacteria isolated in bloodstream infections. Antibiotics. 2020;9(6):345. https://doi.org/10.3390/antibiotics9060345
[40] Dumont Y, Bonzon L, Michon AL, Carriere C, Didelot MN, Laurens C, et al. Epidemiology and microbiological features of anaerobic bacteremia in two French University hospitals. Anaerobe. 2020;64:102207. https://doi.org/10.1016/j.anaerobe.2020.102207
[41] Rodloff AC, Dowzicky MJ. In vitro activity of tigecycline and comparators against a European collection of anaerobes collected as part of the Tigecycline Evaluation and Surveillance Trial (TEST) 2010–2016. Anaerobe. 2018;51:78–88. https://doi.org/10.1016/j.anaerobe.2018.04.009
[42] Shafquat Y, Jabeen K, Farooqi J, Mehmood K, Irfan S, Hasan R, et al. Antimicrobial susceptibility against metronidazole and carbapenem in clinical anaerobic isolates from Pakistan. Antimicrob Resist Infect Control. 2019;8:1–7. https://doi.org/10.1186/s13756-019-0549-8
[43] Cooley L, Teng J. Anaerobic resistance: should we be worried?. Curr Opin Infect Dis. 2019;32(6):523–530. https://doi.org/10.1097/QCO.0000000000000595
[44] Wybo I, Van den Bossche D, Soetens O, Vekens E, Vandoorslaer K, Claeys G, et al. Fourth Belgian multicentre survey of antibiotic susceptibility of anaerobic bacteria. J Antimicrob Chemother. 2014;69(1):155–161. https://doi.org/10.1093/jac/dkt344
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hechos Microbiológicos

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.