Care provided by humanoid robots: a scoping review

Authors

  • Lailla Ketly Ferreira Tiradentes Ruiz State University of Londrina
  • Tatiana da Silva Melo Malaquias State University of Centro Oeste
  • Geraldo Bezerra da Silva Junior University of Fortaleza
  • Isabel Cristina Kowal Olm Cunha Federal University of São Paulo
  • Rosangela Aparecida Pimenta State University of Londrina
  • Patrícia Aroni Dadalt State University of Londrina
  • Maria do Carmo Fernandez Lourenço Haddad State University of Londrina

DOI:

https://doi.org/10.17533/udea.iee.v43n1e11

Keywords:

Robotics, artificial intelligence, patient care, hospital care, ambulatory care, scoping review

Abstract

Objective. To identify the evidence in the literature regarding the care provided to the population by humanoid robots.

Methods. A scoping review based on the guidelines established by the Joanna Briggs Institute. The Preferred Reporting Items for Scoping Review (PRISMA-ScR) checklist was followed. The review protocol was registered on the Open Science Framework under the number osf.io/6ur93. The search was conducted in November 2023 in the following databases: PubMed®, EMBASE®, LILACS, Web of Science, Scopus®, and CINAHL, as well as in the gray literature, including Google Scholar and the Catalog of Theses and Dissertations of the Coordination for the Improvement of Higher Education Personnel (CAPES), using the search strategy: “humanoid robot*” AND “patient*”.

Results. A total of 27 articles were analyzed. Most of the identified studies were conducted in hospital settings (n=13), with a primary focus on adults (n=10) and children (n=8). The countries with the highest number of publications were Japan (n=6), Canada (n=5), and France (n=4). Three areas of care were identified: social interaction (n=17), physical rehabilitation (n=7), and dissemination of health information (n=3). Additionally, only four studies involved collaboration between humanoid robots and healthcare providers.

Conclusion. Despite the increasing use of humanoid robots in healthcare, it remains essential to enhance their integration with professionals in the field. Social interaction highlighted the need to improve patient care, underscoring the importance of aligning the capabilities of these robots with the expertise of healthcare providers. Accordingly, future research should focus on developing strategies that ensure this technology not only assists but also optimizes the quality of care and strengthens interdisciplinary collaboration.

|Abstract
= 431 veces | PDF
= 421 veces| | VIDEO
= 0 veces|

Downloads

Download data is not yet available.

References

1. Sudré GA, Vergilio S, Jesus L de, Rocha M. Estudo da Implantação das Tecnologias de Informação na área da Saúde em Enfermagem: uma revisão integrativa de literatura. Journal of Health Informatics. 2020 2(1): 24-30.

2. ‌Lee-Krueger RCW, Pearson JR, Spencer A, Noel M, Bell-Graham L, Beran TN. Children's Pain During IV Induction: A Randomized-Controlled Trial With the MEDi® Robot. Journal of Pediatric Psychology. 2021; 46(8):991-1000.

3. Semenzato JC. A tecnologia como ferramenta de gestão. Forbes. 2022. Available from: https://forbes.com.br/forbes-money/2022/05/jose-carlos-semenzato-a-tecnologia-como-ferramenta-de-gestao/.

4. Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and Limitations. Anesthesiology. 2020; 132(2):379-94.

5. Silva JO, Monção GA, Cunha ND, Amaral FR, Rocha CU, Fonseca AP, Barros KAAL. Robótica aplicada à saúde: uma revisão histórica e comparativa da cirurgia robótica. In: Anais do 8th Fórum de Pesquisa, Ensino, Extensão e Gestão [Internet]; 2014 set 24-27; Montes Claros, MG. Montes Claros: Universidade Estadual de Montes Claros; 2014. Available from: http://www.fepeg2014.unimontes.br/sites/default/files/resumos/arquivo_pdf_anais/robotica_aplicada_a_saude_uma_revisao_historica_e_comparativa_da_cirurgia_robotica.pdf

6. Celuppi IC, Lima G dos S, Rossi E, Wazlawick RS, Dalmarco EM. Uma análise sobre o desenvolvimento de tecnologias digitais em saúde para o enfrentamento da COVID-19 no Brasil e no mundo. Cadernos de Saúde Pública. 2021; 37(3): e00243220.

7. ‌Mlakar I, Kampič T, Flis V, Kobilica N, Molan M, Smrke U, Plohl N, Bergauer A. Study protocol: a survey ex-ploring patients’ and healthcare professionals’ expectations, attitudes and ethical acceptability regarding the in-tegration of socially assistive humanoid robots in nursing. BMJ Open 2022; 12: e054310.

8. Goulart C, Valadão C, Caldeira EMO, Bastos-Filho RF. Maria: um robô para Interação com crianças com autismo. In: Anais 11th Simpósio Brasileiro de Automação Inteligente (SBAI); Campinas: Unicamp; 2015.

9. Law M, Sutherland C, Ahn HS, MacDonald BA, Peri K, Johanson DL, et al. Developing assistive robots for people with mild cognitive impairment and mild dementia: a qualitative study with older adults and experts in aged care. BMJ Open. 2019; 9(9):e031937.

10. Kowalski C, Brinkmann A, Fifelski-von Böhlen C, Gliesche P, Hein A. A rule-based robotic assistance system viding physical relief for nurses during repositioning tasks at the care bed. International Journal of Intelligency Robot Applied. 2022; 7:1-12.

11. Trovato G; Ramos JG; Azevedo H; Moroni A; Magossi S; Ishii H et al. “Olá, my name is Ana”: A study on Brazilians interacting with a receptionist robot". 2015 International Conference on Advanced Robotics (ICAR), Istanbul, Turkey; 2015: 66-71.

12. Human robotics. Robios cargo [Internet]. Curitiba: Hotmilk R; 2024. Available from: https://www.humanrobotics.ai/

13. Tinbot Robótica. TinbotGPT, um serviço integrado ao ChatGPT (OpenAI). [Internet]. Maringá; 2024. Available from: https://tinbot.com.br/.

14. Conceptmed. Soluções para gestão em Saúde. Porto Alegre: Conceptmed; 2024. Available from: https://www.conceptmed.com.br/

15. Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetc R, Currie M, Lisy K, Qureshi R, Mattis P, Mu P-F. Systematic reviews of etiology and risk. In: Aromataris E; Munn Z. (ed.). JBI Manual for Evidence Synthesis. Adelaide: The Joanna Briggs Institute; [Internet] 2020. Chap. 7. Available from: https://doi.org/10.46658/JBIMES-20-08.

16. Munn Z, Pollock D, Khalil H, Alexander L, Mclnerney P, Godfrey CM, Peters M, Tricco AC. What are scoping reviews? Providing a formal definition of scoping reviews as a type of evidence synthesis. JBI Evidence Synthesis. 2022; 20(4): 950-2.

17. Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil, H. Updated methodological guidance for the conduct of scoping reviews. JBI Evidence Implementation. 2024; 18(10):2119-26.

18. Aromataris E, Lockwood C, Porritt K, Pilla B, Jordan Z. (ed.) JBI Manual for evidence synthesis. Adelaide, AU: JBI 2024.

19. Mercer SW, Higgins M, Bikker AM, Fitzpatrick B, McConnachie A, Lloyd SM, Little P, Watt GC. General Practitioners' Empathy and Health Outcomes: A Prospective Observational Study of Consultations in Areas of High and Low Deprivation. Annals of Family Medicine. 2016; 14(2):117-24.

20. Guemghar I, Pires de Oliveira Padilha P, Abdel-Baki A, Jutras-Aswad D, Paquette J, Pomey MP. Social Robot Interventions in Mental Health Care and Their Outcomes, Barriers, and Facilitators: Scoping Review. JMIR Mental Health 2022; 9(4):e36094.

21. Haluza D, Naszay M, Stockinger A, Jungwirth D. Digital Natives Versus Digital Immigrants: Influence of Online Health Information Seeking on the Doctor-Patient Relationship. Health Communication. 2017; 32(11):1342-9.

22. Ali S, Manaloor R, Ma K, Sivakumar M, Beran T, Scott SD, Vandermeer B, Beirnes N, Graham TAD, Curtis S, Jou H, Hartling L. A randomized trial of robot-based distraction to reduce children's distress and pain during intravenous insertion in the emergency department. Canadian Journal of Emergency Medicine. 2021; 23(1):85-93.

23. Beran T, Pearson JR, Lashewicz B, Baggott S. Perspectives of Child Life Specialists After Many Years of Working With a Humanoid Robot in a Pediatric Hospital: Narrative Design. Journal of Medical Internet Research. 2020; 22(11):e23496.

24. Beran TN, Pearson JR, Lashewicz B. Implementation of a Humanoid Robot as an Innovative Approach to Child Life Interventions in a Children's Hospital: Lofty Goal or Tangible Reality? Frontiers in Psychology 2021; 12: 639394.

25. Chen K, Lou VW, Tan KC, Wai MY, Chan LL. Effects of a Humanoid Companion Robot on Dementia Symptoms and Caregiver Distress for Residents in Long-Term Care. Journal of the American Medical Directors Association 2020; 21(11):1724-1728.e3.

26. Chen LY, Sumioka H, Ke L, Shiomi M, Chen L. Effects of teleoperated humanoid robot application in older adults with neurocognitive disorders in Taiwan: a report of three cases. Aging Medicine and Healthcare 2020; 11(2):67-71.

27. Farrier CE, Pearson JDR, Beran TN. Children's Fear and Pain During Medical Procedures: A Quality Improvement Study with a Humanoid Robot. Canadian Journal of Nursing Research. 2020; 52(4):328-34.

28. Meyns P, van den Bogaart M, Theunissen K, van der Krogt MM, Ortibus E, Desloovere K. Editorial: Motor Control of Gait and the Underlying Neural Network in Pediatric Neurology. Frontiers in Human Neuroscience. 2019; 13:226.

29. Tanioka T. Nursing and Rehabilitative Care of the Elderly Using Humanoid Robots. The Journal of Medical Investigation. 2019; 66(1.2):19-23.

30. Tanioka T, Betriana F, Yokotani T, Osaka K, Locsin RC, King B, Schoenhofer S. The experience of older persons with mental health conditions who interact with healthcare robots and nurse intermediaries: The qualitative case studies. Belitung Nursing Journal. 2021; 7(4):346-53.

31. Ujike S, Yasuhara Y, Osaka K, Sato M, Catangui E, Edo S, Takigawa E, Mifune Y, Tanioka T, Mifune K. Encounter of Pepper-CPGE for the elderly and patients with schizophrenia: an innovative strategy to improve patient's recreation, rehabilitation, and communication. The Journal of Medical Investigation. 2019; 66(1.2):50-3.

32. Garcia G. Efeito do uso de um robô humanoide como ferramenta de motivação para exercícios físicos e seus aspectos psicológicos [dissertação]. Santa Maria: Universidade Federal de Santa Maria; 2019.

33. Tanioka R, Osaka K, Kai Y, Zhao Y, Tanioka T, Takase K et al. Autonomic nervous activity of patient with schizophrenia during Pepper CPGE-led upper limb range of motion exercise. Enfermaria Clinica. 2020; 30(Supp 1):48-53, 2020.

34. Aubin L, Mostafaoui G, Amiel C, Serré H, Capdevielle D, Menibus MH, Boiché J, Schimidt R, Raffard S, Marin L. Study of Coordination Between Patients with Schizophrenia and Socially Assistive Robot During Physical Activity. International Journal of Social Robotics 2021; 13:1625–40.

35. Stoevesandt D, Jahn P, Watzke S, Wohlgemuth WA, Behr D, Buhtz C, Faber I, Enger S, Schwarz K, Brill R. Comparison of Acceptance and Knowledge Transfer in Patient Information Before an MRI Exam Administered by Humanoid Robot Versus a Tablet Computer: A Randomized Controlled Study. Rofo 2021; 193(8):947-54.

36. Alemi M, Ghanbarzadeh A, Meghdari AF, Moghadam LJ. Clinical Application of a Humanoid Robot in Pediatric Cancer Interventions. International Journal of Social Robotics. 2016; 8:743-59.

37. Meghdari A, Shariati A, Alemi M, Vossoughi GR, Eydi A, Ahmadi E, Mozafari B, Amoozandeh Nobaveh A, Tahami R. Arash: A social robot buddy to support children with cancer in a hospital environment. Proceedings of the Institution of Mechanical Engineers. 2018; 232(6):605-18.

38. Meyns P, van der Spank J, Capiau H, Cock L, Steirteghem EV, Looven RV, Waelvelde HV. Do a humanoid robot and music increase the motivation to perform physical activity? a quasi-experimental cohort in typical developing children and preliminary findings in hospitalized children in neutropenia. International Journal of Human-Computer Studies. 2019; 122:90-102.

39. Sarabia M, Young N, Canavan K, Edginton T, Demiris Y, Vizcaychipi M. Assistive robotic technology to combat social isolation in acute hospital settings. International Journal of Social Robotics. 2018; 10(5):610-20.

40. Platz T, Pedersen AL, Deutsch P, Umlauft AN, Bader S. Analysis of the therapeutic interaction provided by a humanoid robot serving stroke survivors as a therapeutic assistant for arm rehabilitation. Frontiers in Robotic and AI 2023; 10: 1-13.

41. Uluer P, Kose H, Gumuslu E, Barkana DE. Experience with an Affective Robot Assistant for Children with Hearing Disabilities. International Journal of Social Robotics 2023; 15(4):643-60.

42. Yoshida A, Kumazaki H, Muramatsu T, Yoshikawa Y, Ishiguro H, Mimura M. Intervention with a humanoid robot avatar for individuals with social anxiety disorders comorbid with autism spectrum disorders. Asian Journal of Psychiatry. 2022; 78:1-3.

43. Blavette L, Rigaud AS, Anzalone SM, Kergueris C, Isabet B, Dacunha S, Pino M. A Robot-Mediated Activity Using the Nao Robot to Promote COVID-19 Precautionary Measures among Older Adults in Geriatric Facilities. International Journal of Environmental Research and Public Health. 2022; 19(9):5222.

44. Al-Taee MA, Kapoor R, Garrett C, Choudhary P. Acceptability of Robot Assistant in Management of Type 1 Diabetes in Children. Diabetes Technology & Therapeutics. 2016; 18(9):551-4.

45. Blanchard A, Nguyen SM, Devanne M, Simonnet M, Le Goff-Pronost M, Rémy-Néris O. Technical Feasibility of Supervision of Stretching Exercises by a Humanoid Robot Coach for Chronic Low Back Pain: The R-COOL Randomized Trial. Biomed Research International. 2022: 5667223.

46. Feingold-Polak R, Barzel O, Levy-Tzedek S. A robot goes to rehab: a novel gamified system for long-term stroke rehabilitation using a socially assistive robot-methodology and usability testing. Journal of Neuroengenieering and Rehabilitation. 2021; 18(1):122.

47. Cohen L, Khoramshahi M, Salesse RN, Bortolon C, Slowinski P, Zhai C, Tsaneva-Atanasova K, Di Bernardo M, Capdevielle D, Marin L, Schimidt RC, Bardy BG, Billard A, Raffard S. Influence of facial feedback during a cooperative human-robot task in schizophrenia. Science Reports 2017; 7: 15023.

48. Lee OEK, Nam I, Chon Y, Park A, Choi N. Socially Assistive Humanoid Robots: Effects on Depression and Health-Related Quality of Life among Low-Income, Socially Isolated Older Adults in South Korea. Journal of Applied Gerontology 2023; 42(3):367-75.

49. Salmerón-Manzano E, Manzano-Agugliaro F. Bibliometric Studies and Worldwide Research Trends on Global Health. International Journal of Environmental Research and Public Health 2020; 17(16):5748.

50. Ayandibu AO, Makhosazana I, Vezi-Magigaba MF, Oladejo Om. Developing Global Relevant Skills in the Fourth Industrial Revolution. In: Abe EN, editor. Future of work, work-family satisfaction, and employee well-being in the fourth Industrial Revolution. Pensilvânia: IGI Global 2021; Chap.16: 232-3.

51. Schwab K, Davis N, Nadella S. Shaping the future of the fourth industrial revolution. London: Penguin Random House; 2018.

52. Khatamova SM, Abdusalomova D, Ibragimova S, Mirzayeva M. The use of artificial intelligence methods in the formation of communicative skills in teaching foreign languages online. American International Journal of Contemporary Research. 2024; 14(1):41-4.

53. Gatringer M. Healthcare 4.0 – desafios e oportunidades para a implantação da inteligência artificial em ambientes hospitalares [dissertation]. São Leopoldo: Unisinos; 2022.

54. Karthika K, Aryara TBS. Humanoid Robotics in Artificial Intelligence. International Research Journal of Computer Science. 2023; 10(5):250-6.

55. Wolf A, Shoham M. Medical Automation and Robotics. In: Nof S, editor. Springer handbook of automation. Berlin: Springer Handbooks. 2009: 1397-407.

56. Brall F, Schmid R. Automation, robots and wage inequality in Germany: a decomposition analysis. Labour. 2022; 1:33-95.

57. Alward Y, Singh O, Ansari MA. Industrial automation and control systems development future and challenges. Journal of Information and Optimization Science 2022; 43(5):1139-50.

58. Ćudić B, Alešnik P, Hazemali D. Factors Impacting University–Industry collaboration in european countries. International Journal of Innovation and Entreprenership and Innovation 2022; 11(1):1-24.

59. Engin M, Kulaç N. Developing a machine learning algorithm for service robots in industrial applications. Machines 2023; 11(4):421.

60. Wright JA. Robots won't save Japan: an ethnography of eldercare automation. Ithaca, NY: Cornell University Press 2023.

61. Ferrante G, Licari A, Fasola S, Marseglia GL, La Grutta S. Artificial intelligence in the diagnosis of pediatric allergic diseases. Pediatric Allergy and Immunology 2021; 32(3):405-13.

62. Kidd J, Kaipa K, Gutierrez K, Pazos P, Ringleb SI. COVID-19 as a magnifying glass: exploring the importance of relationships as education students learn and teach robotics via zoom. Pre-college Engeniering Education Research. 2022; 12(2):143-65.

63. Pawar N, Kubade U, Jumle PM. Application of Multipurpose Robot for Covid-19. In: International Conference on Trends in Electronics and Informatics (ICOEI) 2023: 11-13; Tirunelveli, India: IEEE. p. 25-30.

64. Khan HR, Haura I, Uddin R. RoboDoc: smart robot design dealing with contagious patients for essential vitals amid COVID-19 Pandemic. Sustainability. 2023; 15(2):2-29.

65. Lee R, Pearson J, Spencer A, Noel M, Bell-Graham L, Beran T. 75 Efficacy of MEDi® preparation to manage children’s pain and fear during IV inductions: a randomized-controlled trial. Paediatrics & Child Health. 2019; 24(2):29-30.

66. Kanda T, Nishio S, Ishiguro H, Hagita N. Interactive Humanoid Robots and Androids in Children’s Lives. Child, Youth and Environments. 2023; 19(1):12-33.

67. Kasimoğlu Y, Kocaaydin S, Batu Ş, Ince G, Tuna-Ince EB. The Impact of a Humanoid Robot on Children’s Dental Anxiety, Behavior and Salivary Amylase Levels: A Randomized Clinical Trial. Journal of Pediatric Research. 2023; 10(2):132-41.

68. Barbosa MP, Poll LA, Prado RR, Silva Jr C. Ensino de física no ensino superior: a utilização dos jogos adaptados como instrumentos mediadores na inclusão de alunos autista. In: Franca A, Pinho KR. Autismo: tecnologias e formação de professores para a escola pública. Porto Nacional: i-Acadêmica. 2020:187-203.

69. Silva JO, Monção GA, Cunha ND, Amaral FR, Rocha CU, Fonseca AP, Barros KAAL. Robótica aplicada à saúde: uma revisão histórica e comparativa da cirurgia robótica. In: Anais do 8th Fórum de Pesquisa, Ensino, Extensão e Gestão 2014: 24-27; Montes Claros, MG. Montes Claros: Universidade Estadual de Montes Claros.

70. Moulaei K, Bahaadinbeigy K, Haghdoostd AA, Nezhad MS, Sheikhtaheri A. Overview of the role of robots in upper limb disabilities rehabilitation: a scoping review. Archieves of Public Health. 2023; 81(1):84.

71. Pournajaf S, Morone G, Straudi S, Goffredo M, Leo MR, Calabrò RS, Felzani G, Paolucci S, Filoni S, Santamato A, Franceschini M, The Italian PowerUPS-Rehab Study Group. Neurophysiological and Clinical Effects of Upper Limb Robot-Assisted Rehabilitation on Motor Recovery in Patients with Subacute Stroke: A Multicenter Randomized Controlled Trial Study Protocol. Brain Science 2023; 13(4):700.

72. Fanqi G. Research on the design of rehabilitation robot system based on neural signal control. In: 2nd International Conference on Biological Engineering and Medical Science; 2022 Nov 7-13; Oxford, United Kingdom: ICBIOMED 2023.

73. Tohanean N, Tucan P, Vanta O-M, Abrudan C, Pintea S, Gherman B, Burz A, Banica A, Vaida C, Neguran DA, et al. The Efficacity of the NeuroAssist Robotic System for Motor Rehabilitation of the Upper Limb—Promising Results from a Pilot Study. Journal of Clinical Medicine. 2023; 12(2):425.

74. Moura A, Romeira B. Indústria 5.0: uma indústria focada nas pessoas. In: Machado C, Davin JP, coordenadores. Indústria 5.0: pessoas, tecnologia e sustentabilidade. Coimbra: Conjuntura Actual Editora. 2023; Cap. 3: 35-70.

75. Lima CAB, Carvalho JL, Aquino RCA. Avaliação de vulnerabilidade do idoso através da adaptação transcultural do instrumento de identificação do idoso vulnerável VES-13. Revista Eletrônica da Estácio Recife. 2017; 3(1):1-7.

76. Yu-Ping L, Hong-Xin W, Wen-Hsiang Y, Yi-Lin C. ROS-based Intelligent Vital Sign Monitoring Robot. In: 4th International Conference on Natural Language Processing, Information Retrieval and AI 2023; Dubai: NIAI; 2023a.

77. Yu-Ping L, Wen-Hsiang Y, Hong-Xin W, Yi-Lin C. Development of an Intelligent Vital Sign Monitoring Robot System. International Journal of Artificial Intelligence and Applications. 2023; 14(2):63-83.

78. Ramírez-Pereira M, Figueredo-Borda N, Opazo Morales E. Inteligência artificial no cuidado: um desafio para a Enfermagem. Enfermería. 2023; 12(1):e3372.

79. Ben-Israel D, Jacobs WB, Casha S, Lang S, Ryu WHA, de Lotbiniere-Bassett M, Cadotte DW. The impact of machine learning on patient care: A systematic review. Artificial Intelligence in Medicine 2020; 103:101785.

80. Weissglass DE. Contextual bias, the democratization of healthcare, and medical artificial intelligence in low- and middle-income countries. Bioethics. 2022; 36(2):201-9.

81. Jovanovic L, Schwier A, Matheson E, Xiloyannis M, Rozeboom E, Hochhausen N. Digital Innovation Hubs in Health-Care Robotics Fighting COVID-19: Novel Support for Patients and Health-Care Workers Across Europe. IEEE Robotics and Automation Magazine. 2021; 28(1):40-7.

82. Mukherjee S, Baral MM, Pal SK, Chittipaka V, Roy R, Alam K. Humanoid robot in healthcare: a systematic review and future research directions. In: 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON); 2022 May 26-27; Faridabad, India: IEEE 2022; 822-826.

83 Carmo EG, Zazzetta MS, Costa JLR. Robótica na assistência ao idoso com doença de alzheimer: as vantagens e os desafios dessa intervenção. Estudos Interdisciplinares sobre Envelhecimento. 2016; 21(1):47–74.

Downloads

Published

2025-05-03

How to Cite

Ferreira Tiradentes Ruiz, L. K., da Silva Melo Malaquias, T., Bezerra da Silva Junior, G., Kowal Olm Cunha, I. C., Aparecida Pimenta, R., Aroni Dadalt, P., & do Carmo Fernandez Lourenço Haddad, M. (2025). Care provided by humanoid robots: a scoping review. Investigación Y Educación En Enfermería, 43(1). https://doi.org/10.17533/udea.iee.v43n1e11

Issue

Section

REVIEW ARTICLE / ARTÍCULO DE REVISIÓN / ARTIGO DE REVISÃO