Achievable transmission rate in an Ieee 802.11 Manet link


  • Marco A. Alzate Francisco José de Caldas District University
  • Marcela Mejía Nueva Granada Military University
  • Néstor M. Peña University of Los Andes
  • Miguel A. Labrador University of South Florida



MANET, IEEE 802.11, bandwidth, RTS/CTS, packet length dependency


For management purposes, it is very important to estimate the available bandwidth for each link in a MANET, in an accurate, timely and efficient way. In this paper we show analytical results on the probability distribution function of the bandwidth of a link in a MANET based on IEEE 802.11, that take into account transmission errors. We also show some analytical results on the fraction of time the channel is available for a given virtual link, so the effects of other transmitting nodes can also be taken into account. Together, these results can be usefully exploited in an efficient, accurate and distributed available bandwidth estimation mechanism.

= 397 veces | PDF (ESPAÑOL (ESPAÑA))
= 23 veces|


Download data is not yet available.

Author Biographies

Marco A. Alzate, Francisco José de Caldas District University

Faculty of Engineering.

Marcela Mejía, Nueva Granada Military University

Faculty of Engineering.

Néstor M. Peña, University of Los Andes

Department of Electrical and Electronic Engineering.

Miguel A. Labrador, University of South Florida

Department of Computer Science and Engineering.


C. Perkins. Ad Hoc Networking. Ed. Addison Wesley. New York (USA). 2001. pp. 1-28.

A. Mejia, N. Peña, J. Muñoz, O. Esparza, M. Alzate. “A Game Theoretic Trust Model for On-Line Distributed Evolution of Cooperation in MANETs.” Elsevier Journal of Network and Computer Applications. Vol. 34. No 1. 2011. pp. 39-51.

M. Alzate, N. Pena, M. Labrador. Capacity, bandwidth and available bandwidth concepts for wireless ad hoc networks. IEEE Military Communications Conference. MILCOM 2008. San Diego, California. 2008. pp. 1-7.

F. Abrantes, J. Araújo, M. Ricardo. “Explicit Congestion Control Algorithms for Time Varying Capacity Media” IEEE Transactions on Mobile Computing. Vol. 10. 2011. pp. 81-93.

Q. Shen, X. Fang, P. Li, Y. Fang. “Admission Control Based on Available Bandwidth Estimation for Wireless Mesh Networks” IEEE Transactions on Vehicular Technology. Vol. 58. No 5. 2009. pp. 2519-2528.

W. Yang, X. Yang C. Dong, S. Yang. Interference- and Bandwidth-based Multipath routing protocol in mobile Ad hoc networks. IEEE International Conference on Intelligent Computing and Intelligent Systems. Shangai. 20-22 Nov. 2009. pp. 560-565.

M. Alzate, N. Pena, M.Labrador. “Capacity, Bandwidth, and Available Bandwidth in Wireless Ad Hoc Networks: Definitions and Estimation”. Mobile Ad-Hoc Networks: Protocol Design. Xin Wang (editor). Ed. Intech. Croatia. 2011. pp. 391-416.

G. Bianchi. “Performance Anaylsis of the IEEE 802.11 Distributed Coordination Function”. IEEE Journal on Selected Areas in Communications. Vol. 18. No 3. 2000. pp. 535-547.

P. Gupta, P. Kumar. “The Capacity of Wireless Networks”. IEEE Transactions on Information Theory Vol. 46. No. 2. March 2000. pp. 388-404.

R. Prasad, M. Murray, C. Dovrolis, K. Claffy. “Bandwidth Estimation: Metrics, Measurement Techniques, and Tools”. IEEE Network. Vol. 17. 2003. pp. 27-35.

O. Sheluhi, S. Smolskiy, A. Osin. Self-similar Processes in Telecommunications. Ed. JohnWiley & Sons. New York (USA). 2007. pp. 18-39.

S. Lee, G. Ahn, X. Zhang. “Campbell. INSIGNIA: An IP-Based Quality of Service Framework for Mobile Ad Hoc Networks”. Journal of Parallel and Distributed Computing. Vol. 60. 2000. pp. 374-406

S. Shah, K. Chen, K. Nahrstedt. Available Bandwidth Estimation in IEEE 802.11-based Wireless Networks. First ISMA/CAIDA Workshop on Bandwidth Estimation, BEST 2003, San Diego, California, USA, December 2003. On line: Consulted in September 2007.

Q. Xue, A.Ganz. “Ad Hoc QoS On-demand Routing in Mobile Ad Hoc Networks. ” Journal on Parallel and Distributed Computing. Vol. 63. 2003. pp. 154-165.

Yang, Z., C. Chereddi, H. Luo. Bandwidth Measurement in Wireless Mesh Networks. Department of Electrical & Computer Engineering. University of Illinois at UrbanaChampaign. On line: Consulted in September 2007.

M. Alzate, J. Pagan, N. Peña, M. Labrador. End-toend bandwidth and available bandwidth estimation in multi-hop IEEE 802.11b ad hoc networks. 42nd Annual Conference on Information Sciences and Systems. Princeton University. 2008. pp. 659-664.

C. Sarr, C. Chaudet, G. Chelius, I.Guérin. “Bandwidth Estimation for IEEE 802.11 based ad hoc networks.” IEEE Transactions on Mobile Computing. Vol. 7. 2008. pp. 1228-1241.

A. Kashyap, S. Ganguly, S. Das. A measurement-Based Approach to modeling link capacity in 802.11 based wireless networks. Ed. ACM Mobicom. Montreal (Canada). 2007. pp. 242-253.

IEEE Std 802.11™ 2007 (Revision of IEEE Std 802.11™ 1999). IEEE Standard for Information technology- Telecommunications and information exchange between systems- Local and metropolitan area networks- Specific requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. New York : IEEE, 2007. pp. 261-267.

Qualnet. Qualnet Simulator, version 3.9.5. On line: Consulted in October 2009.

L. Chen, T. Sun, G. Yang, M. Sanadidi, M. Gerla. AdHoc Probe: Path Capacity Probing in Wireless Ad Hoc Networks. First IEEE International Conference on Wireless Internet. Budapest. 2005. pp. 156-163.



How to Cite

Alzate, M. A., Mejía, M., Peña, N. M., & Labrador, M. A. (2012). Achievable transmission rate in an Ieee 802.11 Manet link. Revista Facultad De Ingeniería Universidad De Antioquia, (62), 126–136.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 > >> 

You may also start an advanced similarity search for this article.