Predicción de la concentración de contaminantes atmosféricos basada en un clasificador asociativo de patrones

Autores/as

  • Itzamá López Yáñez Instituto Politécnico Nacional
  • Cornelio Yáñez Márquez Instituto Politécnico Nacional
  • Oscar Camacho Nieto Instituto Politécnico Nacional
  • Amadeo José Argüelles Cruz Instituto Politécnico Nacional

DOI:

https://doi.org/10.17533/udea.redin.13652

Palabras clave:

clasificación de patrones, clasificador Gamma, predicción de contaminantes atmosféricos

Resumen

Desde hace poco más de tres lustros, el Reconocimiento de Patrones ha incidido en el tratamiento de datos concernientes a la protección del medio ambiente; en especial, diversos grupos de investigadores han utilizado algoritmos genéticos y redes neuronales artificiales en la predicción de datos relacionados con las ciencias atmosféricas y el medio ambiente. En este artículo se presentan los resultados de aplicar el clasificador Gamma en la predicción de valores futuros de concentración de contaminantes atmosféricos, obteniendo resultados competitivos (RMSE de 0,556382 ppm para monóxido de carbono).
|Resumen
= 115 veces | PDF
= 56 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Itzamá López Yáñez, Instituto Politécnico Nacional

Centro de Investigación en Computación (CIC).

Cornelio Yáñez Márquez, Instituto Politécnico Nacional

Centro de Investigación en Computación (CIC)

Oscar Camacho Nieto, Instituto Politécnico Nacional

Centro de Investigación en Computación (CIC).

Amadeo José Argüelles Cruz, Instituto Politécnico Nacional

Centro de Investigación en Computación (CIC).

Citas

K. Toepfer. Aliados Naturales: El Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) y la sociedad civil. Ed. UNEP-United Nations Foundation. Hertfordshire. UK. 2004. pp. 16-22.

L. Hisas (editora). A Guide to the Global Environmental Facility (GEF) for NGOs. Ed. UNEP-United Nations Foundation. Buenos Aires. Argentina. 2005. pp. 25-71.

United Nations. Rio Declaration on Environment and Development (Earth Summit). Ed. United Nations Conference on Environment and Development. Rio de Janeiro. Brazil. 1992. pp. 1-6.

United Nations. Kyoto Protocol to The United Nations Framework Convention on Climate Change. Ed. United Nations Framework Convention on Climate Change. Kyoto. Japan. 1997. pp. 1-21.

Secretaría de Comercio y Fomento Industrial. Protección al Ambiente - Contaminación Atmosférica - Determinación de Neblina de Acido Fosfórico en los Gases que Fluyen por un Conducto. Norma Mexicana NMX-AA-090-1986. México. 1986.

Generalitat de Cataluña. Web del Departamento de Medio Ambiente y Vivienda de la Generalitat de Cataluña. 2007. Disponible en: http://mediambient. gencat.net/. Consultado el 16 de diciembre de 2010.

J. Burnetti, R. Manley, W. Mitchell, D. Varnadore. “Visualizing environmental data for program decision support”. Proc. IEEE Conference on Visualization. Vol. 1. 1991. pp. 398-404.

B. Kompare, S. Dzeroski. “Two artificial intelligence methods for knowledge synthesis from environmental data”. Computer techniques in environmental studies V. Vol. 2. 1994. pp. 265-272.

J. Hart, I. Hunt, V. Shankararaman. “Environmental Management Systems - a Role for AI?.” Proc. Binding Environmental Sciences and Artificial Intelligence BESAI’98. Ed. BESAI Working Group. Brighton. UK. 1998. pp. 1-9.

M. W. Gardner, S. R. Dorling. “Artificial neural networks (the multilayer perceptron)--a review of applications in the atmospheric sciences”. Atmospheric Environment. Vol. 32. 1998. pp. 2627-2636. DOI: https://doi.org/10.1016/S1352-2310(97)00447-0

G. Nunnari, A. F. M. Nucifora, C. Randieri. “The application of neural techniques to the modelling of time-series of atmospheric pollution data”. Ecological Modelling. Vol. 111. 1998. pp. 187-205. DOI: https://doi.org/10.1016/S0304-3800(98)00118-5

G. Spellman. “An application of artificial neural networks to the prediction of surface ozone”. Applied Geography. Vol. 19. 1999. pp. 123-136. DOI: https://doi.org/10.1016/S0143-6228(98)00039-3

E. Kalapanidas. N. Avouris. “Feature Selection Using a Genetic Algorithm Applied on an Air Quality Forecasting Problem”. Proc. Binding Environmental Sciences and Artificial Intelligence, BESAI 2002. Ed. BESAI Working Group. 2002. pp. 9.1-9.5.

C. Yáñez Márquez. Memorias Asociativas basadas en Relaciones de Orden y Operadores Binarios. Tesis de Doctorado. Instituto Politécnico Nacional. Centro de Investigación en Computación. México. 2002. pp. 53-62.

M. E. Acevedo Mosqueda. Memorias Asociativas Bidireccionales Alfa-Beta. Tesis de Doctorado. Instituto Politécnico Nacional. Centro de Investigación en Computación. México. 2006. pp. 35-89.

M. E. Acevedo Mosqueda, C. Yáñez Márquez, I. López Yáñez. “A New Model of BAM: Alpha-Beta Bidirectional Associative Memories”. Lecture Notes in Computer Science, LNCS 4263. Ed. Springer-Verlag. Berlin. Heidelberg. 2006. pp. 286-295. DOI: https://doi.org/10.1007/11902140_32

M. E. Acevedo Mosqueda, C. Yáñez Márquez, I. López Yáñez. “Alpha-Beta Bidirectional Associative Memories Based Translator”. International Journal of Computer Science and Network Security. Vol. 6. 2006. pp. 190-194. DOI: https://doi.org/10.1007/11925231_34

M. E. Acevedo Mosqueda, C. Yáñez Márquez, I. López Yáñez. “Alpha-Beta Bidirectional Associative Memories: Theory and Applications”. Neural Processing Letters. Vol. 26. 2007. pp. 1-40. DOI: https://doi.org/10.1007/s11063-007-9040-2

C. Yáñez-Márquez, E. M. Felipe-Riverón, I. LópezYáñez, R. Flores-Carapia. “A Novel Approach to Automatic Color Matching”. Lecture Notes in Computer Science. LNCS 4225. Ed. Springer-Verlag. Berlin. Heidelberg. 2006. pp. 529-538. DOI: https://doi.org/10.1007/11892755_55

I. Román Godínez. Aplicación de los modelos asociativos Alfa-Beta a la Bioinformática. Tesis de Maestría. Instituto Politécnico Nacional. Centro de Investigación en Computación. México. 2007. pp. 39-73.

I. Román Godínez, I. López Yáñez. “A New Classifier Based on Associative Memories”. Proc. 15th International Conference on Computing, CIC 2006. Ed. IEEE Computer Society. Washington, D.C.(USA). 2006. pp. 55-59. DOI: https://doi.org/10.1109/CIC.2006.13

E. Guzmán, O. Pogrebnyak, C. Yáñez Márquez. “Image Compression Algorithm Based on Morphological Associative Memories”. Lecture Notes in Computer Science. LNCS 4225. Ed. Springer-Verlag. Berlín. Heidelberg. 2006. pp. 519-528. DOI: https://doi.org/10.1007/11892755_54

C. Yáñez Márquez, M. E. Cruz Meza, F. A. Sánchez Garfias, I. López Yáñez. “Using Alpha-Beta Associative Memories to Learn and Recall RGB Images”. Lecture Notes in Computer Science. LNCS 4493. Ed. SpringerVerlag. Berlin. Heidelberg. 2007. pp. 828-833. DOI: https://doi.org/10.1007/978-3-540-72395-0_101

L. O. López Leyva, C. Yáñez Márquez, R. Flores Carapia, O. Camacho Nieto. “Handwritten Digit Classification Based on Alpha-Beta Associative Model”. Lecture Notes in Computer Science. LNCS 5197. Ed. Springer-Verlag. Berlin. Heidelberg. 2008. pp. 437-444. DOI: https://doi.org/10.1007/978-3-540-85920-8_54

I. López Yáñez. Clasificador Automático de Alto Desempeño. Tesis de Maestría. Instituto Politécnico Nacional, Centro de Investigación en Computación. México. 2007. pp. 24-44.

C. Yáñez Márquez, I. López Yáñez, G. de la L. Sáenz Morales. “Analysis and Prediction of Air Quality Data with the Gamma Classifier”. Lecture Notes in Computer Science, LNCS 5197. Ed. Springer-Verlag. Berlin. Heidelberg. 2008. pp. 651-658. DOI: https://doi.org/10.1007/978-3-540-85920-8_79

I. López Yáñez, C. Yáñez Márquez, V. M. Silva García. Forecasting Air Quality Data with the Gamma Classifier. Pattern Recognition. Y. Peng-Yeng (editor). Ed. INTECH. Croatia. 2009. pp. 499-512. Disponible en http://sciyo.com/articles/show/title/forecasting-airquality-data-with-the-gamma-classifier. DOI: https://doi.org/10.5772/7528

Secretaría del Medio Ambiente. “Sistema de Monitoreo Atmosférico de la Ciudad de México”. Disponible en: http:/www.sma.df.gob.mx/simat2/. Consultado el 25 de febrero de 2011.

Gobierno del Distrito Federal. “Norma Ambiental para el Distrito Federal”. Gaceta Oficial del Distrito Federal. Epoch XVI. 2006. Disponible en: http://www.sma.df.gob.mx/simat/PCAA/noviembre06_29_141_imeca.pdf. Consultado el 20 de febrero de 2011.

K. S Papadomanolakis, A. P. Kakarountas, N. Sklavos, C. E. Goutis. A Fast Johnson-Mobius Encoding Scheme for Fault Secure Binary Counters. Proc. Design, Automation and Test in Europe 2002. C.D. Kloos and J. da Franca(editors). Paris. France. 2002. pp. 1.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten. “The WEKA Data Mining Software: An Update”. SIGKDD Explorations. Vol. 11. 2009. pp. 10-18. DOI: https://doi.org/10.1145/1656274.1656278

Descargas

Publicado

2012-11-22

Cómo citar

López Yáñez, I., Yáñez Márquez, C., Camacho Nieto, O., & Argüelles Cruz, A. J. (2012). Predicción de la concentración de contaminantes atmosféricos basada en un clasificador asociativo de patrones. Revista Facultad De Ingeniería Universidad De Antioquia, (60), 20–30. https://doi.org/10.17533/udea.redin.13652