Una medida de la teoría de los conjuntos aproximados para sistemas de decisión con rasgos de dominio continuo
DOI:
https://doi.org/10.17533/udea.redin.13666Palabras clave:
aproximación de funciones, teoría de los conjuntos aproximados, selección de rasgosResumen
La Teoría de los conjuntos aproximados ofrece diversas medidas y técnicas para el análisis de datos, especialmente en el caso de problemas donde el rasgo de decisión tiene dominio discreto. En este artículo se propone una medida y métodos basados en ella que permiten extender la aplicabilidad de esta teoría para el caso de problemas donde los rasgos tienen dominio continuo, especialmente el rasgo de decisión. Los estudios experimentales realizados muestran su efectividad.Descargas
Citas
Z. Pawlak. “Rough Sets”. International journal of Computer and Information Sciences. Vol. 11. 1982. pp. 341-356. DOI: https://doi.org/10.1007/BF01001956
Z. Pawlak. “Rough sets, Rough function and Rough calculus”. Rough Fuzzy Hybridization: a new trend in decision-making. Ed. Springer-Verlasg. Berlin. 1999. pp. 235-246.
Z. B. Xu. “Inclusion degree: a perspective on measures for rough set data analysis.” Information Sciences.Vol. 141. 2002. pp. 227-236. DOI: https://doi.org/10.1016/S0020-0255(02)00174-3
F. E. Tay, L. Shen. “Economic and financial prediction using rough set model.” European Journal of Operational Research. Vol. 141. 2002. pp. 641-659. DOI: https://doi.org/10.1016/S0377-2217(01)00259-4
S. K. Pal, A. Skowron. Rough Fuzzy Hybridization: A New Trend in Decision-Making, Ed. Springer-Verlag. Singapore. 1999. pp. 389.
N. Zhong, J. Dong, S. Ohsuga, “Using Rough sets with heuristics for feature selection.” Journal of Intelligent Information System. Vol. 16. 2001. pp. 199-214. DOI: https://doi.org/10.1023/A:1011219601502
R. Jensen, S. Qiang. Finding rough sets reducts with Ant colony optimization. in UK Workshop on Computational Intelligence. Edinburgh (UK). 2003. pp. 15-22.
P. R. Bello, Y. Gomez, Y. Caballero, A. Nowe. “Using ACO and Rough set theory to feature selection”. WSEAS Transactions on Information Science and Applications. Vol. 2. 2005. pp. 512-517. DOI: https://doi.org/10.1145/1068009.1068053
X. Wang. “Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma.” Computer methods and programs in biomedicine. Vol. 83. 2006. pp. 147-156. DOI: https://doi.org/10.1016/j.cmpb.2006.06.007
X. Wang. “Feature selection based on rough sets and particle swarm optimizatio”. Pattern Recognition Letters. Vol. 28. 2007. pp. 459-471. DOI: https://doi.org/10.1016/j.patrec.2006.09.003
Y. Caballero, R. Bello. Feature selection algorithms using Rough set theory. in Seventh Int. Conf. on Intelligence Systems Design and Applications ISDA07. IEEE Computer Society. Rio de Janeiro. 2007. pp. 407- 411. DOI: https://doi.org/10.1109/ISDA.2007.70
P. R. Bello, Y. Gomez, A. Puris, R. Falcon. Feature selection through Dynamic Mesh Optimization. Lecture Notes on Computer Science. 2008. pp. 348-355. DOI: https://doi.org/10.1007/978-3-540-85920-8_43
Y. Gomez, R. Bello, A. Puris. “Two step Swarm intelligence to solve the feature selection problem”. Journal of Universal Computer Science. Vol. 14. 2008. pp. 2582-2596.
G. H. John. Relevant features and the subset selection problem. in Proceedings of the Eleventh International Conference on Machine Learning. Ed. Morgan Kaufmann. 1994. pp. 121-129. DOI: https://doi.org/10.1016/B978-1-55860-335-6.50023-4
I. Inza. “Feature subset selection by bayesian networks based optimization.” Artificial intelligence. Vol. 123. 2000. pp. 157-184. DOI: https://doi.org/10.1016/S0004-3702(00)00052-7
H. Xing, L. Xu. “Feature space theory –a mathematical foundation for data mining.” Knowledge-based systems. Vol. 14. 2001. pp. 253-257. DOI: https://doi.org/10.1016/S0950-7051(01)00103-4
J. Stefanowski. “An experimental evaluation of improving rule based classifiers with two approaches that change representations of learning examples.” Engineering Applications of Artificial Intelligence. Vol.17. 2004. pp. 439-445. DOI: https://doi.org/10.1016/j.engappai.2004.04.017
P. Somol, P. Pudil. “Feature selection toolbox.” Pattern Recognition. Vol. 35. 2002. pp. 2749-2759. DOI: https://doi.org/10.1016/S0031-3203(01)00245-X
M. Dong, R. Kothari. “Feature subset selection using a new definition of classifiability.” Patter Recognition Letter. Vol. 24. 2003. pp. 1215-1225. DOI: https://doi.org/10.1016/S0167-8655(02)00303-3
M. Kudo, J. Sklansky. “Comparison of algorithms that select features for pattern classifiers.” Pattern Recognition. Vol. 33. 2000. pp. 25-41. DOI: https://doi.org/10.1016/S0031-3203(99)00041-2
H. Zhang, G. Sun. “Feature selection using tabu search method.” Pattern Recognition. Vol. 35. 2002. pp. 710- 711. DOI: https://doi.org/10.1016/S0031-3203(01)00046-2
Z. Pawlak. Approximating functions using rough sets. in Proceedings of 2004 Annual Meeting of the North American Fuzzy Information Processing Society NAFIPS. 2004. pp. 785-790. DOI: https://doi.org/10.1109/NAFIPS.2004.1337402
Z. Pawlak, A. Skowron. “Rough sets: Some extensions.” Information Sciences. Vol. 177. 2007. pp. 28-40. DOI: https://doi.org/10.1016/j.ins.2006.06.006
R. Slowinski, D. Vanderpooten. “Similarity relation as a basis for rough approximations.” Advances in Machine Intelligence & Soft-Computing. P. P. Wang, (editor) Ed. Duke University Press. Vol. 4. Durham. 1997. pp. 17-33.
Y. Yao. “Relational interpretations of neighborhood operators and rough set approximations operators”. Information Sciences. Vol. 101. 1998. pp. 239-259. DOI: https://doi.org/10.1016/S0020-0255(98)10006-3
R. Slowinski, D. Vanderpooten. “A generalized definition of rough approximations based on similarity”. IEEE Transactions on Data and Knowledge Engineering. Vol. 12. 2000. pp. 331-336. DOI: https://doi.org/10.1109/69.842271
S. Greco. “Rough sets theory for multicriteria decision analysis.” European Journal of Operational Research. Vol. 129. 2001. pp. 1-47. DOI: https://doi.org/10.1016/S0377-2217(00)00167-3
A. Skowron, R. Swiniarski, P. Synak. “Approximation Spaces and Information Granulation”. Transactions on Rough Sets III. Lecture Notes in Computer Science. J. F. Peters and A. Skowron, (editors). Ed. SpringerVerlag GmbH. 2005. pp. 175-189. DOI: https://doi.org/10.1007/11427834_8
K. Qin, Y. Gao, Z. Pei. “On Covering Rough Sets.” Lectures Notes on Artificial Intelligence. Vol 4481. 2007. pp. 34-41. DOI: https://doi.org/10.1007/978-3-540-72458-2_4
A. Skowron, J. Stepaniuk. “Tolerance approximation spaces.” Fundamenta Informaticae. Vol. 27. 1996. pp. 245-253. DOI: https://doi.org/10.3233/FI-1996-272311
Y. Yao. “On generalizing Rough set theory.” Lectures Notes on Artificial Intelligence. Vol. 2639. 2003. pp. 44-51. DOI: https://doi.org/10.1007/3-540-39205-X_6
W. Zhu, F. Wang. Relations among three types of covering rough sets. in IEEE GrC. Atlanta, USA. 2006. pp. 43-48. DOI: https://doi.org/10.1109/GRC.2006.1635755
D. Bianucci, G. Cattaneo, D. Ciucci. “Entropies and Coentropies of coverings with applications to incomplete information systems.” Fundamenta Informaticae. Vol. 75. 2007. pp. 77-105.
N. H. Son, N. S. Hoa. “Discretization of real value attributes for control problems.” Workshop on Robotics, Intelligent Control and Decision Support Systems, PJWSTK.Ed. Warsaw. Varsovia (Poland). 1999. pp. 47-52.
N. H. Son, N. S. Hoa. “An application of discretization methods in control.” Proc. Of the Workshop on Robotics, Intelligent Control and Decision Support Systems. Polish-Japanese Institute of Information Technology. Ed. Warsaw. Poland. 1999. pp. 47-52.
J. Kennedy, R. C. Eberhart. Particle swarm optimization. in In Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway. IEEE Service Center. New Jersey. 1995. pp. 1942-1948.
F. Herrera, M. Lozano, A. Sanchez. “A Taxonomy for the Crossover Operator for Real Coded Genetic Algorithms: An Experimental Study.” International Journal of Intelligent Systems. Vol. 18. 2003. pp. 309- 338. DOI: https://doi.org/10.1002/int.10091
M. García Martínez, F. Herrera. “Global and local real-coded genetic algorithms based on parent-centric crossover operators.” European Journal of Operational Research. Vol. 185. 2008. pp. 1088-1113. DOI: https://doi.org/10.1016/j.ejor.2006.06.043
K. E. Parsopoulos, M. N. Vrahatis. “Recent approaches to global optimization problems through Particle Swarm Optimization.” Natural Computing. Vol. 1. 2002. pp. 235-306. DOI: https://doi.org/10.1023/A:1016568309421
M. Reyes Sierra, C. C. Coello. “Multi-objective Particle Swarm Optimizers: A survey of the State-of-the-Art.” International Journal of Computational Intelligence Research. Vol. 2. 2006. pp. 287-308. DOI: https://doi.org/10.5019/j.ijcir.2006.68
Z. Zhang, Q. Yang. Dynamic refinement of feature weights using quantitative introspective learning. in In Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI99). 1999. pp.57-71
A. Stahl. “Learning Feature Weights from Case Order Feedback.” Lecture Notes in Computer Science Springer. Vol. 2080. 2001. pp. 502-516. DOI: https://doi.org/10.1007/3-540-44593-5_35
M. A. Hall. Correlation-based feature selection for machine learning, in Deparment of Computer Science. University of Waikato: Hamilton. New Zealand. 1998. pp. 145.
M. A. Hall. Feature selection for discrete and numeric class machine learning. University of Waikato: Hamilton. New Zealand. 1999.
R. L. López, E. Armengol. “Machine learning from examples: Inductive and Lazy methods.” Data & Knowlege Engineering. Vol. 25. 1998. pp. 99-123. DOI: https://doi.org/10.1016/S0169-023X(97)00053-0
W. Duch, K. Grudzinski. Weighting and selection features. Intelligent Information System VIII. in Proceedings of the Workshop held in Ustron. Ustron, Poland. 1999. pp.32-36
T. Mitchell. Machine Learning. Ed. McGraw Hill. Portland, OR, USA. 1997. pp. 414.
J. Demsar. “Statistical comparisons of classifiers over multiple data sets.” Journal of Machine Learning Research. Vol. 7. 2006. pp. 1-30.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.