Semantic assessment of similarity between raster elevation datasets


  • Marco Moreno-Ibarra National Polytechnic Institute
  • Miguel Torres National Polytechnic Institute
  • Rolando Quintero National Polytechnic Institute
  • Giovanni Guzman National Polytechnic Institute
  • Rolando Menchaca-Mendez National Polytechnic Institute



semantic similarity, DEM, ontology, geomorphometric analysis, GIS


This paper describes a method to assess the similarity between digital elevation models (DEM), based on the comparison of the landforms. The method attempts to mimic the one commonly used by human beings, which consists of comparisons among the shapes that a human subject identifies in the landscape. To do so, semantic similarity measurements are applied over a hierarchy of concepts. Our method is composed of two stages: the Geomorphometric Analysis and the Semantic Analysis. The first stage aims to represent the topographic properties using one of the concepts of the hierarchy, depending on an analysis of the DEM. The second stage consists of comparisons among the concepts that characterize the landscape using a measure of semantic similarity. In this stage, two levels of semantic analysis are defined: local and global. The advantage of our method is that the interpretation of the results is simplified by means of a semantic processing.

= 47 veces | PDF (ESPAÑOL (ESPAÑA))
= 18 veces|


Download data is not yet available.

Author Biographies

Marco Moreno-Ibarra, National Polytechnic Institute

Computing Research Center.

Miguel Torres, National Polytechnic Institute

Computing Research Center.

Rolando Quintero, National Polytechnic Institute

Computing Research Center.

Giovanni Guzman, National Polytechnic Institute

Computing Research Center.

Rolando Menchaca-Mendez, National Polytechnic Institute

Computing Research Center.


D. Sheeren, S. Mustière, J. D. Zucker. “A datamining approach for assessing consistency between multiple representations in spatial databases”. Int. J. of Geographical Information Science. Vol. 23. 2009. pp. 961- 992.

P. Fisher, A. Comber, R. Wadsworth. “What’s in a name? Semantics, standards and data quality”. R. Devillers, H. Goodchild. (editors). Spatial data quality. From process to decisions. Ed. CRC Press. Boca Raton. 2010. pp. 2-16.

H. T. Uitermark, P. J. van Oosterom, N. J. I. Mars, M. Molenaar. “Ontology-based integration of topographic data sets”. Int. J. of Applied Earth Observation and Geoinformation. Vol. 7. 2005. pp. 97-106.

J. M. Sappington, K. M. Longshore. “Quantifying Landscape Ruggedness for Animal Habitat Analysis: A Case Study Using Bighorn Sheep in the Mojave Desert”. J. of Wildlife Management. Vol. 71. 2007. pp. 1419-1426.

O. Z. Chaudhry, W. A. Mackaness. “Creating Mountains out of Mole Hills: Automatic Identification of Hills and Ranges Using Morphometric Analysis”. Transactions in GIS. Vol. 12. 2008. pp. 567-589.

E. R. Venteris, B. K. Slater. “A Comparison between Contour Elevation Data Sources for DEM Creation and Soil Carbon Prediction, Coshocton, Ohio”. Transactions in GIS. Vol. 9. 2005. pp. 179-198.

S. Clarke, K. Burnett. “Comparison of Digital Elevation Models for Aquatic Data Development”. Photogrammetric Engineering & Remote Sensing. Vol. 69. 2003. pp. 1367-1375.

S. J. Riley, S. D. De Gloria, R. Elliot. “A terrain ruggedness index that quantifies topographic heterogeneity”. Intermountain J. of Sciences. Vol. 5. 1999. pp. 23-27.

M. Moreno-Ibarra. “Semantic Similarity Applied to Generalization of Geospatial Data”. Lecture Notes in Computer Science. Vol. 4853. 2007. pp. 247-255.

R. Quintero. Representación Semántica de Datos Espaciales Raster. Tesis Doctoral. Instituto Politécnico Nacional. 2007. pp. 77-108.

R. Quintero, M. Torres, M. Moreno, G. Guzmán G. “Metodología para generar una Representación Semántica de Datos Raster”. T. Delgado, J. Capote (editors). Semántica espacial y descubrimiento de conocimiento para desarrollo sostenible. Ed. CUJAE. La Habana. 2009. pp. 119-145.

S. A. Sloman, B. C. Love, A. Woo-Kyoung. “Feature centrality and conceptual coherence”. Cognitive Science. Vol. 22. 1998. pp. 189-228.

A. Rodriguez, M. Egenhofer. “Comparing Geospatial Entity Classes: An Asymmetric and Context- Dependent Similarity Measure”. Int. Journal of Geographical Information Science. Vol. 18. 2004. pp. 229-256.

K. Janowicz, C. Keßler, M. Schwarz, M. Wilkes, I. Panov, M. Espeter, B. Bäumer. “Algorithm, Implementation and Application of the SIM-DL Similarity Server”. Lecture Notes in Computer Science. Vol. 4853. 2007. pp. 128-145.

R. Bonk. “Scale-dependent Geomorphometric Analysis for Glacier Mapping at Nanga Parbat: GRASS GIS Approach”. Proc. of the Open source GIS - GRASS User’s Conference. Trento (Italy). 11-13 september 2002.

S. L. Beasom, E. P. Wiggers R. J. Giordono. “A technique for assessing land surface ruggedness”. J. of Wildlife Management. Vol. 47. 1983. pp. 1163-1166.

J. S. Jenness. “Calculating landscape surface area from digital elevation models”. Wildlife Society Bulletin. Vol. 32. 2004. pp. 829-839.

S. Levachkine, A. Guzman-Arenas. “Hierarchy as a new data type for qualitative variables”. Expert Systems with Applications. Vol. 32. 2007. pp. 899-910.

D. J. Pennock, B. J. Zebarth, E. de Jong. “Landform classification and soil distribution in hummocky terrain, Sasketchewan, Canada”. Geoderma. Vol. 40. 1997. pp. 297-315.



How to Cite

Moreno-Ibarra, M., Torres, M., Quintero, R., Guzman, G., & Menchaca-Mendez, R. (2012). Semantic assessment of similarity between raster elevation datasets. Revista Facultad De Ingeniería Universidad De Antioquia, (59), 37–46.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 > >> 

You may also start an advanced similarity search for this article.