Study of two neural feed-forward structures for digital image compression
DOI:
https://doi.org/10.17533/udea.redin.14178Keywords:
digital image compression, lossy compression, feedforward neuronal networs, peak signal noise relation, compression rateAbstract
This document shows and explains the process for compressing images, in grayscale and in color, using two neural topologies: image function and funnel. For the analysis of neuronal schemes, the number of neurons and layers, type of image, size and number of blocks during training are considered; in order to give experimental support to neural architectures. Quality criteria of the image obtained are also analyzed, such as peak signal-to-noise ratio (PSNR) and compression rate. The importance of the selection of parameters evaluated in quality and compression time is evident. The experimentation process shows that the funnel-type architecture allows to achieve values higher than 35dB in terms of PSNR and 2 bits per pixel in gray images or 3 bpp in color images, with times less than 3 seconds for images smaller than 1 mega pixel. Finally, some recommendations are made based on the methodology used when it is desired to understand images with feed-through networks around the selection of architecture parameters, the pre-processing of the image and the training of the network.
Downloads
References
Tecnología de los contenidos multimedia. Edición y compresión de imágenes estáticas. Programa oficial de postgrado: Master en comunicaciones, redes y gestión de contenidos. España. Disponible en: http://ocw.innova.uned.es/mm2/tcm/contenidos/pdf/tema3.pdf. Diciembre 2008.
R. Ferzli, M. Adnan. Subsampling image compression using Al-Aloui backpropagation algorithm. Electronics, Circuits and Systems. 14th IEEE International Conference. Arizona. 2007. pp. 1260-1263.
W. Gillespie. Still image compression using neural networks. Utah University. Logan. UT. 2005.
V. Rama, P. Vaddella, K. Rama. “Artificial neural networks for compression of digital imágenes: a review”. International Journal of Reviews in Computing. Vol 10. 2010. pp. 75-82
D. Alvarez, M. Guevara, G. Holguin. Preprocesamiento de imágnes aplicadas a mamografías digitales. Universidad tecnológica de Pereira. Scientia et Technica Año XII. No 31. Pereira. Colombia. 2006. pp. 1-6.
A. Durai, E. Saro. “Image Compression with Back- Propagation Neural Network Using Cumulative Distribution Function”. World Academy of Science, Engineering and Tech. Vol. 17. 2006. pp. 60-64.
S. Basu, K. Kayal, J. Sil. Edge preserving image compression technique using adptative feed forward neural network. Proceedings of the ninth IASTED International Conference INTERNET AND MULTIMEDIA SYSTEMS AND APPLICATION. Switzerland. 2005. pp. 467-471.
H. Sahoolizadeh, A. Suratgar. Adaptative image compression using neural networks. Setit, 5th International Conference: Sciences of Electronics Technologies of Information and Telecommunications. Tunisia. 2009. pp. 1-5.
I. Vilovic. An experience in image compression using neural networks. 48th International Symposium ELMAR Focused on Multimedia Signal Processing, Zadar Croatia. 2006. pp. 95-98.
Signal and image processing institute. Ming Hsieh Department of Electrical Engineering. University of southern. California. Disponible en: http://sipi.usc.edu/database/database.php?volume=misc&image=12 Consultado en Noviembre de 2011.
N. Lugo, F. Roldan. “Imágenes usadas en la compresión de imágenes con redes neuronales”. Disponible en: https://rapidshare.com/files/3208725692/Imágenes_usadas_en_la_compresión_de_imágenes_con_redes_neuronales.rar. Publicado en Enero de 2012 y consultado Marzo de 2012.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.