On the evaluation of the unicast-multicast switching point in MBMS networks for transmission power saving

Keywords: Multicast transmission, single frequency networks, MBMS

Abstract

Current  multimedia  services  are  mainly  offered  through  existing  3G  and 4G  mobile  network  infrastructure.  Data  transmission  using  these  kind  of networks is accomplished using multicast mode; in this case, the network allocates radio resources (bandwidth and transmission power) during the whole communication process. This has several drawbacks, such as bandwidth and transmission power consumption, interference and higher operational expenses. Mobile operators require new technologies to optimize their radio resources in order to get more effective operation geared to increase the customer base. Hence the need for a paradigm shift towards multicast or broadcast modes, in which several users can receive the same signal simultaneously, sharing the radio resources. In relation to the above, 3GPP provided a technical solution in the LTE Release 6 standard, which is specified as Multimedia Broadcast Multicast Service (MBMS). MBMS allows unicast to multicast transition from a “switching point” that determines the time and conditions for bandwidth and power transmission savings. This paper presents an evaluation to determine the optimal switching point under the MBMS standard for different wireless contexts. Furthermore, given that MBMS allows the use of Single Frequency Networks (SFN) topologies, with network gain properties, we also determine the additional power savings for this configuration.

|Abstract
= 15 veces | PDF (ESPAÑOL (ESPAÑA))
= 16 veces|

Downloads

Download data is not yet available.

Author Biographies

Raúl Tamayo-Fernández, CICESE

Departmento de  Electrónica y Telecommunicaciones

Ángel Gabriel Andrade-Reátiga, Universidad Autónoma de Baja California

Coordinación Posgrado e Investigación

Arturo Serrano-Santoyo, CICESE

Investigador Titular

Roberto Conte-Galván, CICESE
INVESTIGADOR TITULAR DEPARTAMENTO DE ELECTRÓNICA Y TELECOMUNICACIONES DIVISIÓN DE FÍSICA APLICADA

References

Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012–2017. Available on: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11520862.html. Accessed: January 17, 2013.

3GPP TS 23.246. Technical Specification Group Services and System Aspects; Multimedia Broadcast/ Multicast Service (MBMS); Architecture and functional description (Release 6). 3rd Generation Partnership Project. Technical Specification. Valbonne, France. 2007. pp. 1-48.

ETSI TR 126 946. Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE;Multimedia Broadcast/Multicast Service (MBMS) user service guidelines (3GPP TR 26.946 version 11.1.0 Release 11). Technical Report. European Telecommunications Standards Institute. Sophia, France. 2011. pp. 1-42.

J. Chuang, M. Sirbu. “Pricing Multicast Communication: A Cost-Based Approach.” Telecommunication Systems. Vol. 17. 2001. pp 281- 297.

A. Alexiou, C. Bouras, V. Kokkinos, G. Tsichritzis. “Performance evaluation of LTE for MBSFN transmissions”. Wireless Networks. Vol 18. 2012. pp. 227-240.

A. Soares, A. Correia, J. Silva, N. Souto. UE Counting Mechanism for MBMS Considering PTM Macro Diversity Combining Support in UMTS Networks. IEEE 9th International Symposium on Spread Spectrum Techniques and Applications. Manaus, Brazil. 2006. pp. 361-365.

A. Alexiou, C. Bouras, V. Kokkinos, E. Rekkas. Evaluation of the multicast mode of MBMS. IEEE 18th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’07). Athens, Greece. 2007. pp. 1-5.

C. Wu, X. Sun, T. Zhang. A Power-saving Scheduling Algorithm for Mixed Multicast and Unicast Traffic in MBSFN. Proceddings on Computing, Communications and Applications Conference. Hong Kong, China. 2012. pp. 170-174.

H.Shin. “Energy- and latency-efficient broadcasting mechanism supporting long-term evolution e-multimedia broadcast/multicast service transmission.” IET Communications. Vol. 7. 2013. pp. 1644-1655.

M. Chari, F. Ling, A. Mantravadi, R. Krishnamoorthi, R. Vijayan, G. Walker, R. Chandhok. “FLO Physical Layer: An Overview.” IEEE Transactions on Broadcasting. Vol. 53. 2007. pp. 145-160.

3GPP R1-071049. Spectral efficiency comparison of possible MBMS transmission schemes: Additional results. Technical Report. 3rd Generation Partnership Project. St. Louis, Missouri, USA. 2007. pp. 1-4.

D. Gómez, A. Salieto, A. Garcia, J. Moserrat, N. Cardona. “Planificación de una red DVB-H en entorno urbano.” Sistemas y Telemática. Vol. 5. 2007. pp. 13- 34.

G. Malmgren. “Pulse shaping in OFDM based single frequency networks.” Wireless Personal Communications. Vol. 10. 1999. pp. 155-173.

R. Prasad. OFDM for Wireless Communications Systems. 1st ed. Ed. Artech House. London, England. 2004. pp. 1-272.

M. Hata “Empirical formula for propagation loss in land mobile radio services.” IEEE Transactions on Vehicular Technology. Vol. 29. 1980. pp. 317-325.

Y. Zheng, C. Xiao. “Simulation Models With Correct Statistical Properties For Rayleigh Fading Channels.” IEEE Transactions On Communications. Vol. 51. 2003. pp. 920-928.

M. Pätzold. Mobile fading channels. 1st. ed. Ed. John Wiley & Sons. New York, USA., 2002. pp.1-418.

M. Failli. COST 207: Digital Land Mobile Radio Communications. Final Report. Commission of the European Communities. Luxembourg, Luxembourg. 1989. pp. 1-386

Published
2014-02-12
How to Cite
Tamayo-Fernández R., Andrade-Reátiga Ángel G., Serrano-Santoyo A., & Conte-Galván R. (2014). On the evaluation of the unicast-multicast switching point in MBMS networks for transmission power saving. Revista Facultad De Ingeniería Universidad De Antioquia, (70), 244-253. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/14465