Métodos para determinar la permeabilidad de preformas reforzantes fibrosas
DOI:
https://doi.org/10.17533/udea.redin.15454Palabras clave:
preformas reforzantes, medición de permeabilidad, moldeo líquido de compuestos, permeabilidadResumen
La permeabilidad es la propiedad que determina la facilidad con la que un líquido fluye a través de un medio poroso. Esta variable determina, en el caso de procesos de moldeo líquido de compuestos (Liquid Composites Molding, LCM por sus siglas en Ingles), el patrón de llenado de moldes. Es importante conocer los diferentes métodos de medición de permeabilidad, sus alcances, ventajas y desventajas, ya que en algunos casos se pueden inducir errores considerables en la medición, por lo que es adecuado realizar una validación entre los métodos experimentales y teóricos. El presente artículo realiza una revisión y análisis de las diferentes técnicas establecidas para determinar la permeabilidad de preformas reforzantes, con el fin de presentar una referencia para posteriores estudios e investigaciones en el campo de la simulación y procesamiento de resinas reforzadas con preformas.
Descargas
Citas
A. Chan, D. Larive, R. Morgan. “Anisotropic Permeabilty of Fiber Preforms: Constant Flow Rate Measurement”. J. Compos. Mater. Vol. 27. 1993. pp. 996-1008.
C. Lekakou, M. Johari, D. Norman, M. Bader. “Measurement techniques and effects on in-plane permeability of woven cloths in resin transfer moulding”. Compos. Part A Appl. Sci. Manuf. Vol. 27. 1996. pp. 401-408.
C. Quezada. “Darcy y su contribución a la hidráulica”. Ciencia Ahora. Vol. 9. 2006. pp. 63-68.
F. Dullien. Porous Media: Fluid Transport and Pore Structure. 2nd ed. Ed. Academic Press. San Diego, USA. 1991. pp. 8-10.
L. Ding, C. Shih, Z. Liang, C. Zhang, B. Wang. “In situ measurement and monitoring of whole-field permeability profile of fiber preform for liquid composite molding processes”. Compos. Part A Appl. Sci. Manuf. Vol. 34. 2003. pp. 779-789. DOI: https://doi.org/10.1016/S1359-835X(03)00121-0
S. Ranganathan, R. Easterling, S. Advani, F. Phelan. “The effect of micro-structure variations on the permeability of preform materials”. Polym. Polym. Compos. Vol. 6. 1998. pp. 63-73. DOI: https://doi.org/10.1177/147823919800600201
R. Pomeroy, S. Grove, J. Summerscales, Y. Wang, A. Harper. “Measurement of permeability of continuous filament mat glass–fibre reinforcements by saturated radial airflow”. Compos. Part A Appl. Sci. Manuf. Vol. 38. 2007. pp. 1439-1443. DOI: https://doi.org/10.1016/j.compositesa.2006.11.011
G. Morren, M. Bottiglieri, S. Bossuyt, H. Sol, D. Lecompte, B. Verleye, S. Lomov. “A reference specimen for permeability measurements of fibrous reinforcements for RTM”. Compos. Part A Appl. Sci. Manuf. Vol. 40. 2009. pp. 244–250. DOI: https://doi.org/10.1016/j.compositesa.2008.11.011
C. Binétruy, J. Pabiot. Effects of fabric architectural heterogeneities on Effective and Saturated permeabilities in RTM. Proceedings of ICCM-12. Paris, France. 1999. pp. 1-10.
G. Francucci, E. Rodríguez, A. Vázquez. “Study of saturated and unsaturated permeability in natural fiber fabrics”. Compos. Part A Appl. Sci. Manuf. Vol. 41. 2010. pp. 16-21. DOI: https://doi.org/10.1016/j.compositesa.2009.07.012
D. Turner, K. Hjelmstad. “Determining the 3D permeability of fibrous media using the Newton method”. Compos. Part B. Vol. 36. 2005. pp. 609-618. DOI: https://doi.org/10.1016/j.compositesb.2005.01.009
B. Gebart. “Permeability of Unidirectional Reinforcements for RTM”. J. Compos. Mater. Vol. 26. 1992. pp. 1100-1133. DOI: https://doi.org/10.1177/002199839202600802
A. Ballata, S. Walsh, S. Advani. “Determination of the transverse permeability of a fiber preform”. J Res Plast Compos. Vol. 18. 1999. pp. 1450-1464. DOI: https://doi.org/10.1177/073168449901801601
A. Nabovati, EW. Llewellin, ACM. Sousa. “Through-thickness permeability prediction of three-dimensional multifilament woven fabrics”. Compos. Part A. Vol. 41. 2010. pp. 453-463. DOI: https://doi.org/10.1016/j.compositesa.2009.11.011
A. Miravete. Materiales compuestos II. 1st ed. Ed. Asociación Española de Materiales Compuestos. Barcelona, España. 2000. pp. 951.
J. Summerscales. The effect of permeant on the measured permeability of a reinforcement. Proceedings of 7th International Conference on Flow Processes in Composite Materials (FPCM-7). Newark, USA. 2004. pp. 471-476.
T. Lundström, R. Stemberg, R .Bergström, H. Partanen, PA. Birkeland. “In plane permeability measurements: a nordic round-robin study”. Compos. Part A. Vol. 31. 2000. pp. 29-43. DOI: https://doi.org/10.1016/S1359-835X(99)00058-5
C. Lekakou, M. Johari, D. Norman, M. Bader. “Measurement Techniques and effects on in-plane permeability of woven cloths in RTM”. Compos. Part A. Vol. 27. 1996. pp. 401-408. DOI: https://doi.org/10.1016/1359-835X(95)00028-Z
R. Arbter, J. Beraud, C. Binetruy, L. Bizet, J. Bréard, S. Comas, C. Demaria, A. Endruweit, P. Ermanni, F. Gommer, S. Hasanovic, P. Henrat, F. Klunker, B. Laine, S. Lavanchy, S. Lomov, A. Long, V. Michaud, G. Morren, E. Ruiz, H. Sol, F. Trochu, B. Verleye, M. Wietgrefe, W. Wu, G. Ziegmann. “Experimental determination of the permeability of textiles: A benchmark exercise”. Compos. Part A Appl. Sci. Manuf. Vol. 42. 2011. pp. 1157-1168. DOI: https://doi.org/10.1016/j.compositesa.2011.04.021
KJ. Ahn, JC. Seferis. “Simultaneous measurements of permeability and capillary pressure of thermosetting matrices in woven fabric reinforcements”. Polym. Compos. Vol. 12. 1991. pp. 146-152. DOI: https://doi.org/10.1002/pc.750120303
A. Stadtfeld, M. Erninger, S. Bickerton, SG. Advani. “An experimental method to continuously measure permeability of fiber preforms as a function of fiber volume fraction”. J Reinf Plast Compos. Vol. 21. 2002. pp. 879-900. DOI: https://doi.org/10.1177/073168402128987590
M. Buntain, S. Bickerton. “Compression flow permeability measurement: a continuous technique”. Compos. Part A Appl. Sci. Manuf. Vol. 34. 2003. pp. 445-457. DOI: https://doi.org/10.1016/S1359-835X(03)00090-3
K. Comas, C. Binétruy, P. Krawczak. “Unidirectional compression of fibre reinforcements. Part 2: a continuous permeability tensor measurement”. Compos Sci Technol. Vol. 67. 2007. pp. 638-645. DOI: https://doi.org/10.1016/j.compscitech.2006.07.020
H. Scholz, J. Gillespie, D. Heider. “Measurement of transverse permeability using gaseous and liquid flow”. Compos. Part A. Vol. 38. 2007. pp. 2034–2040. DOI: https://doi.org/10.1016/j.compositesa.2007.05.002
P. Ouagne, J. Bréard. “Continuous transverse permeability of fibrous media”. Compos. Part A. Vol. 41. pp. 2010. pp. 22–28. DOI: https://doi.org/10.1016/j.compositesa.2009.07.008
P. Ouagne, J. Bréard. Influence of the compaction speed on the transverse continuous permeability. The 10th international conference on flow processes in composite materials (FPCM10), 2010. Ascona, Swiss. pp. 1-5.
P. Ouagne, T. Ouahbi, C. Park, J. Bréard, A. Saouab. “Continuous measurement of fiber reinforcement permeability in the thickness direction: Experimental technique and validation”. Compos. Part B Eng. Vol 45. 2012. pp 609-618. DOI: https://doi.org/10.1016/j.compositesb.2012.06.007
FD. Dungan, AM. Sastry. “Saturated and unsaturated polymer flows: microphenomena and modeling”. J Compos Mater. Vol. 36. 2002. pp. 1581-1603. DOI: https://doi.org/10.1177/0021998302036013179
K. Pillai. “Modeling the unsaturated flow in liquid composite molding processes: A review and some thoughts”. J Compos Mater. Vol. 38. 2004. pp. 2097-2118. DOI: https://doi.org/10.1177/0021998304045585
Y. Ma, R. Shishoo. “Permeability characterization of different architectural fabrics”. J Compos Mater. Vol.
1999. pp. 729-50.
P. Luce, S. Advani, J. Howard, R. Parnas. “Permeability characterization. Part 2: Flow behavior in multiple-layer preforms”. Polym. Compos. Vol. 16. 1995. pp. 446. DOI: https://doi.org/10.1002/pc.750160603
L. Trevino, K. Rupel, W.Young, M.Liou, LJ. Lee. “Analysis of resin injection molding in molds with preplaced fiber mats. 1: permeability and compressibility measurements”. Polym. Compos. Vol. 12. 1991. pp. 20-9. DOI: https://doi.org/10.1002/pc.750120105
RS. Parnas, JG. Howard. “Permeability characterization. Part 1: a proposed standard reference fabric for permeability”. Polym. Compos. Vol. 16. 1995. pp. 429-445. DOI: https://doi.org/10.1002/pc.750160602
H. Drapier, A. Pagot, A. Vautrin, P. Henrat. “Influence of the stitching density on the transverse permeability of non-crimped new concept (NC2) multiaxial reinforcements: measurements and predictions”. Compos. Sci. Technol. Vol. 62. 2002. pp. 1979-1991. DOI: https://doi.org/10.1016/S0266-3538(02)00127-6
S. Drapier, J. Monatte, O. Elbouazzaoui, P. Henrat. “Characterization of transient through-thickness permeabilities of Non Crimp New Concept (NC2) multiaxial fabrics”. Compos. Part A Appl. Sci. Manuf. Vol. 36. 2005. pp. 877-892. DOI: https://doi.org/10.1016/j.compositesa.2005.01.002
M. Li, S. Wang, Y. Gu, Y. Li, K. Potter, Z. Zhang. “Evaluation of through-thickness permeability and the capillary effect in vacuum assisted liquid molding process”. Compos. Sci. Technol. Vol. 72. 2012. pp. 873-878. DOI: https://doi.org/10.1016/j.compscitech.2012.02.014
R. Parnas, C.Schultheisz, S. Ranganathan. “Hydrodynamically induced preform deformation”. Polym. Compos. Vol. 17. 1996. pp. 4-10. DOI: https://doi.org/10.1002/pc.10585
S. Amico, C. Lekakou. “An experimental study of the permeability and capillary pressure in resin-transfer moulding”. Compos. Sci. Technol. Vol. 61. 2001. pp. 1945–1959. DOI: https://doi.org/10.1016/S0266-3538(01)00104-X
K. Lai, B. Khomami, JL. Kardos. “Accurate permeability characterization of preforms used in polymer matrix composite fabrication processes”. Polym. Compos. Vol. 18. 1997. pp. 368-77. DOI: https://doi.org/10.1002/pc.10288
J. Weitzenböck, R. Shenoi, P. Wilson. “Radial flow permeability measurement. Part A: Theory”. Compos. Part A. Vol. 30. 1999. pp. 781-796. DOI: https://doi.org/10.1016/S1359-835X(98)00183-3
J. Weitzenböck, R. Shenoi, P. Wilson. “Radial flow permeability measurement. Part B: application”. Compos. Part A. Vol. 30. 1999. pp. 797-813. DOI: https://doi.org/10.1016/S1359-835X(98)00184-5
K. Hoes, D. Dinescu, H. Sol, M. Vanheule, R. Parnas, Y. Luo, I. Verpoest. “New set-up for measurement of permeability properties of fibrous reinforcement for RTM”. Compos. Part A. Vol. 33. 2002. pp. 959-969. DOI: https://doi.org/10.1016/S1359-835X(02)00035-0
C. Demaría, E. Ruiz, F. Trochu. “In-Plane Anisotropic Permeability Characterization of Deformed Woven Fabrics by Unidirectional Injection. Part I: Experimental Results”. Polym. Compos. Vol. 28. 2007. pp. 797-811. DOI: https://doi.org/10.1002/pc.20107
K. Adams, W. Russel, L. Rebenfeld. “Radial penetration of a viscous fluid into a planar anisotropic porous medium”. Int. J. Multiph. Flow. Vol. 14. 1988. pp. 203. DOI: https://doi.org/10.1016/0301-9322(88)90006-7
J. Bear. Dynamics of Fluids in Porous Media. 1st ed. Ed. American Elsevier Publishing Company. New York, USA. 1972. pp 764.
M. Bruschke, S. Advani. “A finite-element control volume approach to mold filling in anisotropic porous-media”. Polym. Compos. Vol. 11. 1990. pp. 398. DOI: https://doi.org/10.1002/pc.750110613
S. Chan, A. Hwang. “Anisotropic in-plane permeability of fabric media”. Polym. Eng. Sci. Vol. 13. 1991. pp. 1233. DOI: https://doi.org/10.1002/pen.760311613
R. Chan, A. Larive, D. Morgan. “Anisotropic permeability of fibre preforms: constant flow rate measurement”. Compos. Mater. Vol. 27. 1993. pp. 996. DOI: https://doi.org/10.1177/002199839302701003
S. Parnas, A. Salem. “A comparison of the unidirectional and radial in-plane flow of fluids through woven composite reinforcements”. Polym. Compos. Vol. 14. 1993. pp. 383. DOI: https://doi.org/10.1002/pc.750140504
J. Skartsis, L. Khomami, B. Kardos. “The effect of Capillary Pressure on the Impregnation of Fibrous Media”. SAMPE J. Vol. 28. 1992. pp 2-12.
E. Carter, A. Fell, P. Griffin, J. Summerscales. “Data validation procedure for the automated determination of the two-dimensional permeability tensor of a fabric reinforcement”. Compos. Part A. Vol. 27A. 1996. pp. 255-261. DOI: https://doi.org/10.1016/1359-835X(95)00062-7
P. Ferland, D. Guittard, F. Trochu. “Concurrent methods for permeability measurements of RTM”. Polym. Compos. Vol. 17. 1996. pp. 149–158. DOI: https://doi.org/10.1002/pc.10600
T. Lundström, B.Gebart, E. Sandlund. “In-plane permeability measurements on fibre reinforcements by the multi-cavity parallel flow technique”. Polym. Compos. Vol. 20. 1999. pp. 146-54. DOI: https://doi.org/10.1002/pc.10342
S. Mekic, B. Bakke. “Radial infusion models for permeability measurements of compressed fibrous beds”. Int. J. Multiph. Flow. Vol. 48. 2013. pp. 1-10. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2012.07.013
M. Foley, T. Gutowski. The effect of process variables of permeability in the FRTM process. Proceedings of 23rd International SAMPE Technical Conference. New York, USA. 1991. pp. 326-339.
V. Hammond, A. Loos. “The effects of fluid type and viscosity on the steady-state and advancing front permeability behavior of textile performs”. J. Reinf. Plast. Compos. Vol. 16. 1997. pp. 50-72. DOI: https://doi.org/10.1177/073168449701600105
Y. Luo, I. Verpoest, K. Hoes, M. Vanheule, H. Sol, A. Cardon. “Permeability measurement of textile reinforcement with several test fluids”. Compos. Part A. Vol. 32. 2001. pp. 1497-1504. DOI: https://doi.org/10.1016/S1359-835X(01)00049-5
E. Rodriguez, F. Giacomelli, A. Vazquez. “Permeability-Porosity Relationship in RTM for Different Fiberglass and Natural Reinforcements”. J. Compos. Mater. Vol. 38. 2004. pp. 259–268. DOI: https://doi.org/10.1177/0021998304039269
D. Kim, J. Opperer. “Determination of permeability of fibrous medium considering inertial effects”. Int Commun Heat Mass Transf. Vol. 29. 2002. pp. 879-885. DOI: https://doi.org/10.1016/S0735-1933(02)00408-6
D. Kim, J. Opperer. “Gas flow method for detecting local preform defects by inverse estimation of space-varying perme-ability”. J Compos Mater. Vol. 37. 2003. pp. 1367–1383. DOI: https://doi.org/10.1177/0021998303035179
S. Kim, I. Daniel. “Transient gas flow technique for inspection of fibre preforms in resin transfer molding”. Compos. Part A. Vol. 36. 2005. pp. 1694-1669. DOI: https://doi.org/10.1016/j.compositesa.2005.03.002
B. Hwang, M. Um, I. Daniel. A new technique to determine in-plane permeability of fiber preforms: gas flow method. Proceedings of the second Asian–Australasian conference on composite materials (ACCM-2000). Kyongju, Korea. 2000. pp. 179-184.
M. Um, I. Daniel, B. Childs. “A gas flow method for determination of in-plane permeability of fiber preforms”. Polym. Compos. Vol. 22. 2001. pp. 47-56. DOI: https://doi.org/10.1002/pc.10515
J. Opperer, S. Kim, I. Daniel. “Characterization of local preform defects in resin transfer molding by the gas flow method and statistical analysis”. Compos Sci Technol. Vol. 64. 2004. pp. 1921-1935. DOI: https://doi.org/10.1016/j.compscitech.2004.02.012
K. Ken, C. William, P. Brian. “Measurements of the permeability of fiber preforms and applications”. Compos. Sci. Technol. Vol. 60. 2000. pp. 2435-2441. DOI: https://doi.org/10.1016/S0266-3538(00)00037-3
G. Mooren, S. Bossuyt, H. Sol. “2D permeability tensor identification of fibrous reinforcements for RTM using an inverse method”. Compos. Part A. Vol. 39. 2008. pp. 1530-1536. DOI: https://doi.org/10.1016/j.compositesa.2008.05.019
C. Zuorong, Y. Lin, L. Hongyuan. “Effective permeabilities of multilayer fabric preforms in liquid composite moulding”. Compos. Struct. Vol. 66. 2004. pp. 351-357. DOI: https://doi.org/10.1016/j.compstruct.2004.04.056
K. Okonkwo, P. Simacek, S. Advani, R. Parnas. “Characterization of 3D fiber preform permeability tensor in radial flow using an inverse algorithm based on sensors and simulation”. Compos. Part A. Vol. 42. 2011. pp. 1283-1292. DOI: https://doi.org/10.1016/j.compositesa.2011.05.010
A. Charmetant, E. Vidal, P. Boisse. “Hyperelastic modelling for mesoscopic analyses of composite reinforcements”. Compos Sci Technol. Vol. 71. 2011. pp. 1623–1631. DOI: https://doi.org/10.1016/j.compscitech.2011.07.004
E. De Luycker, F. Morestin, P. Boisse, D. Marsal. “Simulation of 3D interlock composite preforming”. Compos Struct. Vol. 88. 2009. pp. 615-623. DOI: https://doi.org/10.1016/j.compstruct.2008.06.005
L. Silva, G. Puaux, M. Vincent, P. Laure. “A monolithic finite element approach to compute permeability at microscopic scales in LCM processes”. Int J Mater Form. Vol. 3. 2010. pp. 619-622. DOI: https://doi.org/10.1007/s12289-010-0846-5
T. Ouahbi, A. Saouab, J. Bréard, P. Ouagne, P. Chatel. “Modeling of hydro-mechanical coupling in infusion processes”. Compos. Part A. Vol. 38. 2007. pp. 1646-1654. DOI: https://doi.org/10.1016/j.compositesa.2007.03.002
P. Ouagne, J. Bréard, T.Ouahbi, A. Saouab, CH Park. “Hydro-mechanical loading and compressibility of fibrous media for resin infusion processes”. Int J Mater FormForm. Vol. 3. 2010. pp. 1287-1294. DOI: https://doi.org/10.1007/s12289-009-0671-x
S. Jaganathan, H. Tafreshi, B. Pourdeyhimi. “A realistic approach for modeling permeability of fibrous media: 3-D imaging coupled with CFD simulation”. Chem Eng Sci. Vol. 63. 2008. pp. 244-252. DOI: https://doi.org/10.1016/j.ces.2007.09.020
G. Laschet, T. Kashko, S. Angel, J. Scheele, R. Nickel,
W. Bleck, K. Bobzin. “Microstructure based model for permeability predictions of open-cell metallic foams via homogenization”. Mater Sci Eng A. Vol. 472. 2008. pp. 214-226. DOI: https://doi.org/10.1016/j.msea.2007.03.046
X. Chen, T. Papathanasiou. “On the variability of the Kozeny constant for saturated flow across unidirectional disordered fiber arrays”. Compos. Part A Appl. Sci. Manuf. Vol. 37. 2006. pp. 836-846. DOI: https://doi.org/10.1016/j.compositesa.2005.01.018
X. Chen, T. Papathanasiou. “Micro-scale modeling of axial flow through unidirectional disordered fiber arrays”. Compos Sci Technol. Vol. 67. 2007. pp. 1286-1293. DOI: https://doi.org/10.1016/j.compscitech.2006.10.011
J. Wang, W. Hwang. “Permeability prediction of fibrous porous media in a biperiodic domain”. J Compos Mater. Vol. 42. 2008. pp. 909-929. DOI: https://doi.org/10.1177/0021998308090448
J. Wang, W. Hwang. “Transverse mobility prediction of non-Newtonian fluids across fibrous porous media”. J Compos Mater. Vol. 45. 2011. pp. 883-893. DOI: https://doi.org/10.1177/0021998311402255
M. Nordlund, T. Lundström. “Numerical study of the local permeability of noncrimp fabrics”. J Compos Mater. Vol. 39. 2005. pp. 929-947. DOI: https://doi.org/10.1177/0021998305048734
M. Nordlund, T. Lundström, V. Frishfelds, A. Jakovics. “Permeability network model for non-crimp fabrics”. Compos. Part A. Vol. 37. 2006. pp. 826-835. DOI: https://doi.org/10.1016/j.compositesa.2005.02.009
N. Ngo, K. Tamma. “Microscale permeability prediction of porous fibrous media”. Int J Heat Mass Transf. Vol. 44. 2001. pp. 3135-3145. DOI: https://doi.org/10.1016/S0017-9310(00)00335-5
N. Ngo, K. Tamma. “Complex three dimensional microstructure permeability prediction of porous fibrous media with and without compaction”. Int J Numer Meth Eng. Vol. 60. 2004. pp. 1741-1757. DOI: https://doi.org/10.1002/nme.1020
H. Tan, K. Pillai. “Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: isothermal flows”. Compos. Part A. Vol. 43. 2012. pp. 1-13. DOI: https://doi.org/10.1016/j.compositesa.2010.12.013
E. Belov, S. Lomov, I. Verpoest, T. Peters, D. Roose,
R. Parnas, K. Hoes, H. Sol. “Modelling of permeability of textile reinforcements: lattice Boltzmann method”. Compos Sci Technol. Vol. 64. 2004. pp. 1069-1080. DOI: https://doi.org/10.1016/j.compscitech.2003.09.015
R. Verleye, S. Lomov, A. Long, I. Verpoest, D. Roose. “Permeability prediction for the meso-macro coupling in the simulation of the impregnation stage of resin transfer moulding”. Compos. Part A. 2010. Vol. 41. pp. 29-35. DOI: https://doi.org/10.1016/j.compositesa.2009.06.011
H. Liu, W. Hwang. “Permeability prediction of fibrous porous media with complex 3D architectures”. Compos. Part A. Vol. 43. 2012. pp. 2030-2038. DOI: https://doi.org/10.1016/j.compositesa.2012.07.024
F. Zhang, S. Comas, C. Binetruy. “Statistical modeling of in-plane permeability of non-woven random fibrous reinforcement”. Compos. Sci. Technol. Vol. 72. 2012. pp. 1368-1379. DOI: https://doi.org/10.1016/j.compscitech.2012.05.008
S. Rossell. Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures. Tesis. Department of Chemical Engineering. Montana State University-Bozeman. Montana, USA. 2000.
J. Cairns, D. Humbert, D. Mandell. “Modeling of Resin Transfer Molding of Composite Materials with Oriented Unidirectional Plies”. Compos. Part A. 1999. Vol. 30. . pp. 375-383. DOI: https://doi.org/10.1016/S1359-835X(98)00081-5
F. Loix, P. Badel, L. Orgéas, C. Geindreau, P. Boisse. “Woven fabric permeability: From textile deformation to fluid flow mesoscale simulations”. Compos. Sci. Technol. Vol. 68. 2008. pp.1624-1630 DOI: https://doi.org/10.1016/j.compscitech.2008.02.027
P. Xu, B. Yu. “Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry”. Adv Water Resour. Vol. 31. 2008. pp. 74-81. DOI: https://doi.org/10.1016/j.advwatres.2007.06.003
Z. Cai. “Estimation of the permeability of fibrous preforms for resin transfer moulding processes”. Compos Manuf. Vol. 3. 1992. pp. 251–257. DOI: https://doi.org/10.1016/0956-7143(92)90112-8
J. Westhuizen, P. Plessis. “Quantification of unidirectional fiber bed permeability”. J Compos Mater. Vol. 28. 1994. pp. 619–637. DOI: https://doi.org/10.1177/002199839402800703
K. Pillai, S. Advani. “Wicking across a fiber-bank”. J Colloid Interface Sci. Vol. 183. 1996. pp. 100–110. DOI: https://doi.org/10.1006/jcis.1996.0522
F. Zhou. N. Kuentzer, P. Simacek, S. Advani, S. Walsh. “Analytic characterization of the permeability of dual-scale fibrous porous media”. Compos. Sci. Technol. Vol. 66. 2006. pp. 2795- 2803. DOI: https://doi.org/10.1016/j.compscitech.2006.02.025
F. Zhou, J. Alms, S. Advani. “A closed form solution for flow in dual scale fibrous porous media under constant injection pressure conditions”. Compos Sci Technol. Vol. 68. 2008. pp. 699-708. DOI: https://doi.org/10.1016/j.compscitech.2007.09.010
J. Acheson, P. Simacek, S. Advani. “The implications of fiber compaction and saturation on fully coupled VARTM simulation”. Compos. Part A Appl. Sci. Manuf. Vol. 35. 2004. pp. 159-169. DOI: https://doi.org/10.1016/j.compositesa.2003.02.001
A. Simacek, S. Advani. “A numerical model to predict fiber tow saturation during liquid composite molding”. Compos Sci Technol. Vol. 63. 2003. pp. 1725-1736. DOI: https://doi.org/10.1016/S0266-3538(03)00155-6
M. Li, S. Wang, Y. Gu, Z. Zhang, Y. Li, K. Potter. “Dynamic capillary impact on longitudinal micro-flow in vacuum assisted impregnation and the unsaturated permeability of inner fiber tows”. Compos Sci Technol. Vol. 70. 2010. pp. 1628-1636. DOI: https://doi.org/10.1016/j.compscitech.2010.06.004
N. Kuentzer, P. Simacek, S. Advani, S. Walsh. “Correlation of void distribution to VARTM manufacturing techniques”. Compos. Part A Appl. Sci. Manuf. Vol. 38. 2007. pp. 802-813. DOI: https://doi.org/10.1016/j.compositesa.2006.08.005
J. Verrey, V. Michaud, J. Manson. “Dynamic capillary effects in liquid composite moulding with non-crimp fabrics”. Compos. Part A Appl. Sci. Manuf. Vol. 37. 2006. pp. 92-102. DOI: https://doi.org/10.1016/j.compositesa.2005.04.011
J. Lawrence, V. Neacsu, S. Advani. “Modeling the impact of capillary pressure and air entrapment on fiber tow saturation during resin infusion in LCM”. Compos. Part A Appl. Sci. Manuf. Vol. 40. 2009. pp. 1053–1064. DOI: https://doi.org/10.1016/j.compositesa.2009.04.013
J. Mogavero, S. Advani. “Experimental Investigation of Flow Through Multi-Layered Preforms”. Polym. Compos. Vol. 18. 1997. pp .649-655. DOI: https://doi.org/10.1002/pc.10316
M. Veronica, A. Calado, S. Advani. “Effective average permeability of multilayer perform in Resin Transfer Moulding”. Compos. Sci. Technol. Vol. 56. 1996. pp. 519-531. DOI: https://doi.org/10.1016/0266-3538(96)00037-1
Y. Song, J. Youn. “Flow advancement through multi-layered preform with sandwich structure”. Compos. Part A Appl. Sci. Manuf. Vol. 38. 2007. pp. 1082-1088. DOI: https://doi.org/10.1016/j.compositesa.2006.04.009
R. Parnas, F. Phelan. “The effect of heterogeneous porous media on mold filling in resin transfer molding”. Sample Quart. Vol. 22. 1991. pp. 53-60.
T. Sadiq, S. Advani, R. Parnas. “Experimental investigation of transverse flow through aligned cylinders”. International Journal of Multiphase Flow. Vol. 21. 1995. pp. 755. DOI: https://doi.org/10.1016/0301-9322(95)00026-T
H. Jinlian, L. Yi, S. Xueming. “Study on void formation in multi-layer woven fabrics”. Compos. Part A. Vol. 35. 2004. pp. 595. DOI: https://doi.org/10.1016/j.compositesa.2003.11.007
Y. Parseval, K. Pillai, S. Advani. “A simple model for the variation of permeability due to partial saturation in dual scale porous media”. Transp. Porous Media. Vol. 27. 1997. pp. 243-264. DOI: https://doi.org/10.1023/A:1006544107324
K. Pillai, S. Advani. “A model for unsaturated flow in woven fiber preforms during mold filling in resin transfer molding”. Journal of Composite Materials. Vol. 32. 1998. pp. 1753-1783. DOI: https://doi.org/10.1177/002199839803201902
S. Advani, E. Sozer. “Process modeling in composites manufacturing”. 1st ed. Ed. Marcel Dekker. New York, USA. 2003. pp 63-108. DOI: https://doi.org/10.1201/9780203910061
C. Tucker, R. Dessenberger. “Governing equations for flow and heat transfer in stationary fiber beds”. Flow and rheology in polymer composites manufacturing. Ed. Elsevier Science. Amsterdam, Países Bajos. 1994. pp 257-323.
B. Ramakrishnan, R. Pitchumani. “Fractal permeation characteristics of preforms used in liquid composite molding”. Polym. Compos. Vol. 21. 2000. pp. 281-296. DOI: https://doi.org/10.1002/pc.10185
R. Pitchumani, B. Ramakrishnan. “A fractal geometry model for evaluating permeabilities of porous preforms used in liquid composite molding”. Int J Heat Mass Transf. Vol. 42. 1999. pp. 2219-2232. DOI: https://doi.org/10.1016/S0017-9310(98)00261-0
R. Umer, S. Bickerton, A. Fernyhough. “The effect of yarn length and diameter on permeability and compaction response of flax fibre mats”. Composites Part A-applied Science and Manufacturing. Vol. 42. 2011. pp. 723-732. DOI: https://doi.org/10.1016/j.compositesa.2011.02.010
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.