Evaluation of Technology using TOPSIS in Presence of Multi-collinearity in Attributes: Why use the Mahalanobis distance?


  • Rodrigo Villanueva-Ponce Universidad Autónoma de Ciudad Juárez
  • Jorge Luis García-Alcaraz Universidad Autónoma de Ciudad Juárez https://orcid.org/0000-0002-7092-6963


Multi-attribute techniques, Technology for Advance Manufacturing (TAM) investment,, TOPSIS, Euclidean distance, Mahalanobis distance


This paper validates mathematically an improvement to the multi-criteria technique TOPSIS, (Technique for Order of Preference by Similarity to Ideal Solution) which traditionally uses the Euclidean distance when evaluating a set of alternatives, and assumes that there is independence between the attributes of the alternatives being evaluated, condition that is not always true. This paper demonstrates how the Mahalanobis distance incorporates the linear dependence between the alternative’s attributes, and also presents two cases of study in which evaluations are performed with both distances, finding differences in proposed solutions.

= 20 veces | PDF (ESPAÑOL (ESPAÑA))
= 15 veces|


Download data is not yet available.


C. Parkan, L. Wu. “Decision-making and performance measurement models with applications to robot selection”. Computers & Industrial Engineering. Vol. 36. 1999. pp. 503-523.

C. Hofmann, S. Orr. “Advanced manufacturing technology adoption-the German experience”. Technovation. Vol. 25. 2005. pp. 711-724.

F. Lefley, F. Wharton, L. Hajek, J. Hynek, V. Janecek. “Manufacturing investments in the Czech Republic: - An international comparison”. International Journal of Production Economics. Vol. 88. 2004. pp. 1-14.

S. MacDougall, R. Pike. “Consider your options: changes to strategic value during implementation of advanced manufacturing technology”. Omega. Vol. 31. 2003. pp. 1-15.

M. Small, I. Chen. “Economic and strategic justification of AMT inferences from industrial practices”. International Journal of Production Economic. Vol. 49. 1997. pp. 65-75.

J. Meredith, N. Suresh. “Justification techniques for advanced manufacturing technologies”. International Journal of Production Research. Vol. 24. 1987. pp. 1043-1057.

R. Adler. “Strategic Investment Decision Appraisal Techniques: The Old and the New”. Business Horizons. Vol. 43. 2000. pp. 15-22.

M. Wiecek, E. Matthias, G. Fadel, J. Ruiz. “Multiple criteria decision making for engineering”. Omega. Vol. 36. 2008. pp. 337-339.

R. Yusuff, M. Hashmib. “A preliminary study on the potential use of the Analytical Hierarchical Process (AHP) to predict Advanced Manufacturing Technology (AMT) implementation”. Robotics and Computer-Integrated Manufacturing. Vol. 7. 2001. pp. 421-427.

B. Ahn, K. Park. “Comparing methods for multi-attribute decision making with ordinal weights”. Computers and Operations Research. Vol. 35. 2008. pp. 1660-1670.

S. Hajkowicz, A. Higgins. “A comparison of multiple criteria analysis techniques for water resource management”. European Journal of Operational Research. Vol. 184. 2008. pp. 255-265.

Y. Lai, T. Liu, C. Hwang. “TOPSIS for MODM”. European Journal of Operational Research. Vol. 76. 1994. pp. 486-500.

M. Chen, G. Tzeng. “Combining gray relation and TOPSIS concepts for selecting an expatriate host country”. Mathematical and Computer Modelling. Vol. 40. 2004. pp. 1473-1490.

K. Yoon, C. Hwang. “Multiple Attribute Decision Making. An introduction”. Quantitative Applications in the Social Sciences. Vol. 7-104. 1995. pp. 53-62.

M. Janic. “Multi-criteria evaluation of high-speed rail, trans-rapid maglev, and air passenger transport in Europe”. Transportation Planning and Technology. Vol. 26. 2003. pp. 491-512.

C. Kwong, S. Tam. “Case-based reasoning approach to concurrent design of low power transformers”. Journal of Materials Processing Technology. Vol. 128. 2002. pp. 136-141.

A. Milani, A. Shanian, R. Madoliat. “The effect of normalization norms in multiple attribute decision making models: A case study in gear material selection”. Structural Multidisciplinary Optimization. Vol. 29. 2005. pp. 312-318.

B. Srdjevic, Y. Medeiros, A. Faria. “An objective multi-criteria evaluation of water management scenarios”. Water Resources Management. Vol. 18. 2004. pp. 35- 54.

K. Yoon, C. Hwang. “Manufacturing plant location analysis by multiple attribute decision making: Part I—single-plant strategy”. International Journal of Production Research. Vol. 23. 1985. pp. 345-359.

R. Rao. “Evaluation of environmentally conscious manufacturing programs using multiple attribute decision-making methods”. Proceedings of the Institution of Mechanical Engineers - Part B - Engineering Manufacture. Vol. 222. 2008. pp. 441- 451.

R. Rao, J. Davim. “Decision-making framework model for material selection using a combined multiple attribute decision-making method”. International Journal of Advanced Manufacturing Technology. Vol. 35. 2007. pp. 751-760.

A. Bhattacharya, B. Sarkar, S. Mukherjee. “Distance-based consensus method for ABC analysis”. International Journal of Production Research. Vol. 45. 2007. pp. 3405-3420.

R. Prabhakaran, B. Babu, V. Agrawal. “Optimum selection of a composite product system using MADM”. Materials & Manufacturing Processes. Vol. 21. 2006. pp. 883-891.

Y. Deng. “Plant location selection based on fuzzy TOPSIS”. International Journal of Advanced Manufacturing Technology. Vol. 28. 2006. pp. 839- 844.

R. Rao. “Machinability evaluation of work materials using a combined multiple attribute decision-making method”. International Journal of Advanced Manufacturing Technology. Vol. 28. 2006. pp. 221- 227.

H. Byun, K. Lee. “A decision support system for the selection of a rapid prototyping process using the modified TOPSIS method”. International Journal of Advanced Manufacturing Technology. Vol. 26. 2006. pp. 1338-1347.

O. Ghrayeb, N. Phojanamongkolkij, R. Marcellus, W. Zhao. “A practical framework to evaluate and select robots for assembly operations”. Journal of Advanced Manufacturing Systems. Vol. 3. 2004. pp. 151-167.

M. Yurdakul, C. Çogun. “Development of a multi-attribute selection procedure for non-traditional machining processes”. Proceedings of the Institution of Mechanical Engineers -- Part B -- Engineering Manufacture. Vol. 217. 2003. pp. 993-1009.

T. Saaty. “Time dependent decision-making; dynamic priorities in the AHP/ANP: Generalizing from points to functions and from real to complex variables”. Mathematical and Computer Modeling. Vol. 46. 2007. pp. 860-891.

M. Meloun, J. Militky. “Detection of single influential points in OLS regression model building”. Analytica Chimica Acta. Vol. 439. 2001. pp. 169-191.

M. Kiang. “A comparative assessment of classification methods”. Decision Support Systems. Vol. 35. 2003. pp. 441-454.

H. Nocairi, E. Mostafa, E. Vigneau, D. Bertrand. “Discrimination on latent components with respect to patterns. Application to multi-collinear data”. Computational Statistics and Data Analysis. Vol. 48. 2005. pp. 139-147.

P. Kovács, T. Petres, L. Tóth. “A New Measure of Multi-collinearity in Linear Regression Models”. International Statistical Review. Vol. 73. 2005. pp. 405-412.

W. Hoyt, Z. Imel, F. Chan. “Multiple Regression and Correlation Techniques: Recent Controversies and Best Practices”. Rehabilitation Psychology. Vol. 53. 2008. pp. 321-339.

S. Xiang, F. Nie, C. Zhang. “Learning a Mahalanobis distance metric for data clustering and classification”. Pattern Recognition. Vol. 41. 2008. pp. 3600-3612.

A. Pasini. “A bound for the collinearity graph of certain locally polar geometries”. Journal of Combinatorial Theory, Series A. Vol. 58. 1991. pp. 127-130.

S. Lipovetsky, W. Conklin. “Multi-objective regression modifications for collinearity”. Computers and Operations Research. Vol. 28. 2001. pp. 1333-1345.

D. Montgomery, E. Peck, G. Vining. “Wiley Series in Probability and Statistics Series”. Introduction to linear regression analysis. 5a ed. New York. USA. 2012. pp. 167-193.

R. Johnson, D. Wichern. Applied Multivariate Statistical Analysis. 3rd ed. Ed. Prentice Hall. Englewood Cliffs, New Jersey, USA. 1992. pp. 512- 532.

R. Liu, J. Kuang, Q. Gong, X. Hou. “Principal component regression analysis with SPSS”. Computer Methods and Programs in Biomedicine. Vol. 71. 2003. pp. 141-147.

B. Li, A. Morris, E. Martin. “Generalized partial least squares regression based on the penalized minimum norm projection”. Chemometrics and Intelligent Laboratory Systems. Vol. 72. 2004. pp. 21-26.

M. Behzadiana, S. Khanmohammadi, M. Yazdanib, J. Ignatiusc. “A state-of the-art survey of TOPSIS applications”. Expert Systems with Applications. Vol. 39. 2012. pp 13051–13069.



How to Cite

Villanueva-Ponce, R., & García-Alcaraz, J. L. (2013). Evaluation of Technology using TOPSIS in Presence of Multi-collinearity in Attributes: Why use the Mahalanobis distance?. Revista Facultad De Ingeniería Universidad De Antioquia, (67), 31–42. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/16308