Control of a virtual prototype of an ankle rehabilitation machine

Authors

  • Andrés Blanco-Ortega Centro Nacional de Investigación y Desarrollo Tecnológico https://orcid.org/0000-0002-0088-6863
  • René Fabián Vázquez-Bautista Universidad Veracruzana
  • Gerardo Vela-Váldes Centro Nacional de Investigación y Desarrollo Tecnológico
  • Enrique Quintero-Marmol Centro Nacional de Investigación y Desarrollo Tecnológico
  • Guadalupe López-López Centro Nacional de Investigación y Desarrollo Tecnológico https://orcid.org/0000-0003-3831-5174

Keywords:

Ankle rehabilitation machine, continuous passive motion, computed control torque

Abstract


In this paper a virtual prototype for ankle rehabilitation which provides the whole range of ankle related foot movements is presented. Mathematical models of 1 and 2 degrees of freedom are presented for the dynamic of a single motion and the combination of two movements, respectively. The controllers proposed are a PID control for a single motion and a computed torque control for the combination of two movements. These controllers are designed with trajectory tracking task to provide smooth movements of rehabilitation in a single motion or the combination of two movements. Some simulation results using the mathematical model are presented and compared with the obtained from the virtual prototype simulated under the ADAMS environment

|Abstract
= 63 veces | PDF (ESPAÑOL (ESPAÑA))
= 48 veces|

Downloads

Download data is not yet available.

References

S. O’Discoll, N. Giori. “Continuous Passive Motion (CPM): Theory and principles of applications”. Journal of Rehabilitation Research and Development. Vol. 32. 2000. pp. 179-188.

R. Salter, P. Field. “The effects of continuous compression on living articular cartilage. An experimental investigation”, Journal of Bone and Joint Surgery. Vol. 42. 1960. pp. 31-49.

W. Prentice. Técnicas de rehabilitación en la medicina deportiva. 3a . ed. Barcelona, España: Paidotribo. 2001. pp. 44-55.

L. Chaitow, J. Walker. Aplicación clínica de las técnicas neuromusculares. Extremidades inferiores. 2a . ed. Barcelona, España: Paidotribo, 2007. pp. 165-191.

http://www.stroke-rehab.com/stroke-rehab-exercises. html. Consultado el 31, octubre, 2011.

http://www.lifescientz.com/ankle-cpm.htm. Consultado el 31, octubre, 2011.

http://www.1-800-medical.com/cpm/cpm.htm. Consultado el 31, octubre, 2011.

M. Girone, G. Burdea, M. Bouzit, “The Rutgers Ankle Orthopedic Rehabilitation Interface”, Proceedings of the ASME Haptics Symposium. Vol. 67. 1999. pp. 305- 312.

M. Girone, G. Burdea, M. Bouzit, V. Popescu, J. Deutsch. “Othopedic Rehabilitation Using the Rutgers Ankle Interface”, Proc. of Medicine Meets Virtual Reality 2000. IOS Press. pp. 89-95.

J. Deutsch, J. Latonio, G. Burdea, R. Boian. Rehabilitation of Musculoskeletal Injuries Using the Rutgers Ankle Haptic Interface: Three Case Reports, Eurohaptics Conference, Birmingham UK. Vol. 6. 2001. pp. 1-4.

J. Yoon, J. Ryu. A Novel Reconfigurable Ankle/Foot Rehabilitation Robot, International Conference on Robotics and Automation - IEEE. 2005. pp. 2290- 2295.

A. Saglia, N. Tsagarakis1, J. Dai1, D. Caldwell. A High Performance 2-dof Over-Actuated Parallel Mechanism for Ankle Rehabilitation. IEEE International Conference on Robotics and Automation. 2009. pp. 2180-2186.

G. Liu, J. Gao, H. Yue, X. Zhang, Guangda Lu. Design and Kinematics Simulation of Parallel Robots for Ankle Rehabilitation. IEEE International Conference on Mechatronics and Automation. 2006. pp. 1109- 1113.

K. Chou-Ching, M. Ju, S. Chen, B. Pan. “A Specialized Robot for Ankle Rehabilitation and Evaluation”. Journal of Medical and Biological Engineering. Vol. 28. 2008. pp. 79-86.

Y. Tsoi, H. Xie, S. Q. Design and Control of a Parallel Robot for Ankle Rehabiltation. International Conference on Mechatronics and Machine Vision in Practice. 2008. pp. 515-520.

C. Syrseloudis, I. Emiris: A Parallel Robot for Ankle Rehabilitation-Evaluation and its Design Specifications. 8th IEEE International Conference on Bioinformatics and Bioengineering. 2008. pp. 1-6.

C. Syrseloudis, I. Emiris, C. Maganaris, T. Lilas. “Design Framework for a Simple Robotic Ankle Evaluation and Rehabilitation Device”. IEEE Engineering in Medicine and Biology Society. 2008. pp. 4310-4313.

C. Syrseloudis, I. Emiris, T. Lilas, A. Maglara.” Design of a Simple and Modular 2-DOF Ankle Physiotherapy Device Relying on a Hybrid SerialParallel Robotic Architecture”. Journal of Applied Bionics and Biomechanics, Special Issue on Assistive and Rehabilitation Robotics. Vol. 8. 2011. pp.1-14.

K. Homma, M. Usuba. Development of Ankle Dorsiflexion/Plantarflexion Exercise Device with Passive Mechanical Joint. 10th IEEE International Conference on Rehabilitation Robotics. 2007. pp. 292- 297.

A. Blanco, H. Azcaray, L. Vela, R. Vázquez Bautista. Prototipo virtual de un rehabilitador de tobillo. IX Congreso Internacional sobre Innovación y Desarrollo Tecnológico - CIINDET 2011. Cuernavaca, México. Noviembre 23-25. 2011. pp. 1-6.

H. Sira, “Sliding Mode Control of the PrismaticPrismatic-Revolute Joint Mobile Robot with a Flexible Joint”. Lecture Notes in Control and Information Sciences. Vol. 259. 2000. pp. 421-441.

M. Spong, S. Hutchinson, M. Vidyasagar. Robot Modeling and Control. 2a . ed. John Wiley & Sons Inc. 2005. pp. 253-267.

Published

2013-08-16

How to Cite

Blanco-Ortega, A., Vázquez-Bautista, R. F., Vela-Váldes, G., Quintero-Marmol, E., & López-López, G. (2013). Control of a virtual prototype of an ankle rehabilitation machine. Revista Facultad De Ingeniería Universidad De Antioquia, (67), 183–196. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/16321

Most read articles by the same author(s)