A geometrical approach for surface reconstruction by means of radial basis functions with compact support


  • Germán Torres-Sánchez Universidad del Magdalena
  • John William Branch Universidad Nacional de Colombia


Surface reconstruction, radial basis functions, range data, evolutionary strategy


Recently in the community of computer vision related with the surface reconstruction processes of free-form objects there has been a growing trend in the use of interpolation techniques. In this area the radial basis functions interpolator can produce three-dimensional models with high levels of precision, high flexibility to reproduce complex shapes and a high tolerance to noise level. The radial basis functions used for data interpolation need to estimate a set of parameters. This work shows a approach to estimation of those parameters based on the surface geometric characteristics, these are both centers and support ratio. The approach results are shown mean by interpolation of real objects range data.

= 27 veces | PDF (ESPAÑOL (ESPAÑA))
= 12 veces|


Download data is not yet available.

Author Biographies

Germán Torres-Sánchez, Universidad del Magdalena

Grupo en Iinvestigación y Desarrollo en Nuevas Tecnologías de la Información y la Comunicación

John William Branch, Universidad Nacional de Colombia

Grupo en Investigación y Desarrollo en Inteligencia Artificial – GIDIA


M. Powell. “The theory of radial basis function approximation” Advances in Numerical Analysis II. W.A. Light. Editor. Ed. Claredon Press. Oxford. 1990. pp. 105.

A. Arge. Approximation of scattered data using smooth grid functions. Technical Report STF33 A94003.

SINTEF. 1994.

M. Buhmann. “Multivariate interpolation in odddimensional Euclidean spaces using multiquadrics” Const. Approx. 1990. Vol. 6. pp. 21-34.

M. Buhmann. Radial Basis Functions: Theory and Implementations. Ed. Cambridge University Press. 2003. pp. 99-153.

H. G. Barrow, J. M. Tanenbaum. “Interpreting line drawings as three-dimensional surfaces”. Proc. Of AAAI-80. Stanford. CA. 1980. pp.11-14.

P. Blicher. “From images to surfaces: A computational study of the human early visual system”. SIGART Bull. Mit press. 1982. Vol. 82. pp. 12-14.

W. Grimson. From Images to Surfaces: A Computational Study of the Human Early Visual System. Cambridge: MIT Press1981. Ph.D.Thesis. pp. 274.

D. Marr; T. Poggio. Proceedings of the Royal Society of London. Series B, Biological Sciences. Vol. 204.

pp. 301-328.

T. Boult, J. Kender. “Visual surface reconstruction using sparse depth data”. CVPR86. 1986. pp. 68-76.

J. Duchon. “Spline minimizing rotation-invariant seminorms in sobolev spaces”. Constructive Theory of Functions of several Variables. Vol. 571. 1997. pp. 85- 100.

B. Baxter. The Interpolation Theory of Radial Basis Functions. PhD thesis. Trinity College. 1992.

H. Wendland. “Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree”. Advances in Computational Mathematics. Vol. 4. 1995. pp. 389-396.

M. Floater, A. Iske. “Multistep scattered data interpolation using compactly supported radial basis functions”. Journal of Comp. Appl. Math. Vol. 73. 1996. pp. 65-78.

J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, T. R. Evans. “Reconstruction and representation of 3D objects with radial basis functions”. Proceedings of the 28th Annual Conference on Computer Graphics and interactive Techniques SIGGRAPH 2001. ACM. New York. NY. pp. 67-76.

J. Carr, R. Beatson, B. Mccallum, W. Fright, T. Mclennan, T. Mitchell. “Smooth surface reconstruction from noisy range data”. Proceedings of the 1st international conference on Computer graphics and interactive techniques in Australasia and South East Asia. GRAPHITE ’03: New York. USA. ACM Press. 2003. pp. 119.

R. K. Beatson, W. A. Light, S. Billings. “Fast Solution of the Radial Basis Function Interpolation Equations: Domain Decomposition Methods”. J. Sci. Comput. Vol. 22. 2000. pp. 1717-1740.

Y. Ohtake. “3d scattered data approximation with adaptive compactly supported radial basis functions”. Proceedings of the Shape Modeling International 2004 (SMI’04). Washington D.C. USA. IEEE Computer Society. 2004. pp. 31-39.

N. Kojekine, V. Savchenko. Surface reconstruction based on compactly supported radial basis functions,

Geometric modeling: techniques, applications, systems and tools. Ed. Kluwer Academic Publishers. Norwell. Ma. USA. 2004. pp. 218-231.

G. Sánchez. “Selección de centros de Interpolación de funciones de Base Radial para el Ajuste de superficies de Objetos de forma libre”. CLEI - XXXII Conferencia Latinoamericana de Informática. Santiago de Chile – Chile. 2006.

R. Schaback. Creating Surfaces from Scattered Data Using Radial Basis Functions, Mathematical Methods

in Computer Aided Geometric Design III. M. Dæhlen, T. Lyche, L.L. Schumaker (eds.), Ed. Vanderbilt Univ. Press. Nashville. 1995. pp. 477-496.

R. Mcmahon, R. Franke. “Knot selection for least squares thin plate splines”. SIAM Journal on Scientific and Statistical Computing. Vol. 13. 1992. pp. 484- 498.

F. Girosi. “Some extensions of radial basis functions and their applications in artificial intelligence”. Computers and Mathematics with Applications. Vol.

K. Salkauskas. “Moving least squares interpolation with thin-plate splines and radial basis functions”. Computers and Mathematics with Applications. Vol. 24. 1992. pp. 177-185.

R. Carlson, B. Natarajan. “Sparse approximate multiquadric interpolation”. Computers and Mathematics with Applications. Vol. 26. 1994. pp. 99-108.



How to Cite

Torres-Sánchez, G. ., & Branch, J. W. (2013). A geometrical approach for surface reconstruction by means of radial basis functions with compact support. Revista Facultad De Ingeniería Universidad De Antioquia, (48), 119–129. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/16440