Una aproximación a la indexación semántica y a la recuperación de información

Autores/as

  • Marco Suárez-Barón Universidad Pedagógica y Tecnológica de Colombia
  • Kathleen Salinas-Valencia Universidad Pedagógica y Tecnológica de Colombia

DOI:

https://doi.org/10.17533/udea.redin.16528

Palabras clave:

Recuperación de información, ontologías, P2P, semántica, indexación semántica, taxonomía

Resumen

This paper presents an approach to the semantic indexes contained in particular topics as well as the most important models for Information Retrieval. They will be dynamically constructed using the annotations contained in the web resources and the definitions in ontologies of the annotation terms used. The indexes are envisioned as active agents that ‘know’ what topics they can handle (i.e. find content for) based upon their own ontologies.

|Resumen
= 304 veces | PDF
= 70 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Citas

E. Voorhees.” The cluster hypothesis revisited”. SIGIR.1995. pp. 188-196.

S. Deerwester, S. T. Dumais, T. K. Landauer. “Indexing by latent semantic analysis”. Journal of the American Society of Information Science. Vol. 41. 1990. pp.391- 407.

S. Weng, C. Lin. “Using text classification and multiple concepts to answer e-mails”. Experts systems with applications. Vol 26. 2004. pp. 529-543. DOI: https://doi.org/10.1016/j.eswa.2003.10.011

W. Frakes, R. Baeza-Yates. Information Retrieval Data Structures and Algorithms. Ed. Prentice Hall. New Jersey.1992. pp. 504.

T. Hofmann. “Latent class models for collaborative filtering”. Proceedings of the 16th International Joint Conference on Artificial Intelligence IJCAI. Stockholm. Sweden. July 31 - August 6. 1999 pp. 10-20.

S. Deerwester, S. Dumais, R. Harshman. “Indexing by Latent Semantic Analysis”. Journal of the American Society for Information Science. Vol. 41. 1990. pp. 391-407. DOI: https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

R. Baeza-Yates, C. Castillo, F. Saint-Jean: “Web Dynamics, Structure and Page Quality”. In M. Levene and A. Poulovassilis (eds.) Web Dynamics. Ed. Springer, New York. 2004. pp. 93-109. DOI: https://doi.org/10.1007/978-3-662-10874-1_5

D. Bassu, Cl. Behrens. “Distributed LSI: Scalable Concept-based Information Retrieval with High Semantic Resolution”. Proceedings of the 3rd SIAM International Conference on Data Mining (Text Mining Workshop). San Francisco. 2003. pp. 72-82.

URL http://www.acm.org/class/2000/. Consultada el 20 de agosto de 2005.

S. Dumais. “Latent Semantic Indexing (LSI) and TREC-2”. D. Harman (ed.). The Second Text Retrieval Conference (TREC2), NIST Special Publication 500- 215. Ed. Morgan Kaufmann Publishing Co. San Mateo, California. 1994. pp. 105-116.

G. Salton, M. J. McGuill. Introduction to modern information retrieval. Ed. McGraw Hill. New York. 1986. pp. 400.

J. D. Anderson, J. Pérez-Carballo. “The Nature of Indexing: how Humans and Machines Analyse Messages and Texts for Retrieval - Part I: Research, and the Nature of Human Indexing”. Information Processing and Management. Vol. 37. 2001. pp. 231-254. DOI: https://doi.org/10.1016/S0306-4573(00)00026-1

M. W. Berry, P. G. Young, “Using latent semantic indexing for multilingual information retrieval”. Computers and the Humanities Journal. Vol.29. 1995. pp. 413-429. DOI: https://doi.org/10.1007/BF01829874

M. Visser. “Semantic Indexing Based on Description Logics”. Proceedings of Knowledge Representation Meets Databases (KRMD). Saarbruecken. Germany. 2004. pp. 456-463.

C. Tang, S. Dwarkadas, Z. Xu. “On scaling latent semantic indexing for large peer-to-peer systems”. Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2004. pp. 112–121. DOI: https://doi.org/10.1145/1008992.1009014

E. H. Han, G. Karpis. “Fast supervised dimensionality reduction algorithm with applications to document categorization and Retrieval”. Proceedings of the ACM CIKM. 2000. pp. 12-19. DOI: https://doi.org/10.21236/ADA439511

R. B Yates, B. R. Neto. Modern Information Retrieval. Ed. Pearson Education. 1999. pp.240.

T. Hofmann. “Probabilistic Latent Semantic Indexing”. Proceedings of the Twenty-Second Annual International SIGIR Conference on Research and Development in Information Retrieval. Berkeley. California. 1999. pp. 140-160. DOI: https://doi.org/10.1145/312624.312649

P. Bennet, S. T. Dummais, E. Horvitz. “Probabilistic combination of text classifiers using reliability indicators”. Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Tampere. Florida. 2002. pp. 207-214. DOI: https://doi.org/10.1145/564376.564413

S. Yuan, C. Cheng. “Ontology-Based couple clustering for heterogeneous product recommendation in mobile marketing”. Experts systems with applications. Vol 26. 2004. pp. 461-476. DOI: https://doi.org/10.1016/j.eswa.2003.10.006

D. Lin. “An information-theoric definition of similarity”. Proceedings of the 15th International Conference on Machine Learning. San Francisco CA. 1998. pp. 296-304.

J. Nielsen, S. Dumais. “Automating the assignment of submitted manuscripts to viewers”. Proceedings of the Fifteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Copenhagen, Denmark. 1992. pp. 233-244.

T. K. Landauer, P. W. Foltz, D. Laham. “An Introduction to Latent Semantic Analysis”. Discourse Processes. Vol 25. 1998. pp. 259-284. DOI: https://doi.org/10.1080/01638539809545028

A. Kontostathis, W. M. Pottenger. “A Framework for Understanding Latent Semantic Indexing (LSI) Performance”. Information Processing and Management. Vol. 42. 2006. pp. 56-73. DOI: https://doi.org/10.1016/j.ipm.2004.11.007

C. Aswani-Kumar, S. Srinivas. “An Information Retrieval Model Based on Latent Semantic Indexing with Intelligent Preprocessing”. Journal of Information and Knowledge Management. Vol 4. 2005. pp. 279- 285. DOI: https://doi.org/10.1142/S0219649205001250

C. Aswani-Kumar, S. Srinivas. ”Latent Semantic Indexing Using Eigenvalue Analysis for Efficient Information Retrieval”. International Journal in AMSC. Vol. 16. 2006. pp. 551-558.

J. Nielsen, S. T. Dumais. “Automating the assignment of submitted manuscripts to viewers”. N. Belkin, P. Ingwesen, & A. M. Pejtersen (Eds.) Proceedings of the Fifteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New. York. 2000. pp. 209-228.

E. Brill. “Some advances in rule-based part of speech tagging”, Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94). Seattle. WA. 1994. pp. 722–727.

H. H. Chen, C. J. Lin. “A multilingual news summarizer”. Proceedings of 18th International Conference on Computational Linguistics. Saarbrücken. 2000. pp. 159-165. DOI: https://doi.org/10.3115/990820.990844

C. Wei, T. H. Cheng, Y. C. Pai. “Semantic enrichment in knowledge repositories: annotating reply semantic relationships between discussion documents”. Journal of Database Management. Vol 17. 2006. pp. 49-66. DOI: https://doi.org/10.4018/jdm.2006010104

R. Neches, R. E. Fikes. “Enabling Technology for Knowledge Sharing”. AI Magazine. Vol. 12. 2001. pp. 36-56.

G. Miller, N. Antonakis. “Nouns in WordNet: A Lexical Inheritance System”. International Journal of Lexicography. Vol. 3. 2000. pp. 245-264. DOI: https://doi.org/10.1093/ijl/3.4.245

H. Kitakami, M. Arikawa. “An Intelligent System for Integrating Autonomous Nomenclature Databases in Semantic Heterogeneity”. R. R. Wagner, H. Thoma (Eds.), Proceedings of Database and Expert System Applications (DEXA). Zurich. Switzerland. 1996. pp. 187-196. DOI: https://doi.org/10.1007/BFb0034680

A. Maedche, S. Staab. “Measuring Similarity between Ontologies”. Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge Management. EKAW. Siguenza. Spain. 2002. pp.34-45. DOI: https://doi.org/10.1007/3-540-45810-7_24

J. Euzenat, P. Shvaivo. Ontology Matching. Ed. Springer. Heidelberg (DE). 2007. pp. 61-72.

W. Nejdl, A. Loser. “Super-Peer-Based Routing and Clustering Strategies for RDF-Based Peer-to-Peer Networks”. Proceedings of WWW. Budapest. Hungary. 2003. pp. 123-130. DOI: https://doi.org/10.1145/775228.775229

A. Voutilainen. “A detector of english noun phrases”. Proceedings of Workshop on Very Large Corpora. Ohio State University. Columbus (OH). 1993. pp. 48-57.

S. Casteleyn, P. Plessers. “Generating semantic annotations during the web design process”, Proceedings of the 6th international conference on Web engineering. Menlo Park. California. 2006. pp. 91-92. DOI: https://doi.org/10.1145/1145581.1145600

H. Han, L. Reeve, “Survey of semantic annotation platforms”. Proceedings of the 2005 ACM symposium on Applied computing. Santa Fe. New Mexico. 2005. pp. 1634-1638. DOI: https://doi.org/10.1145/1066677.1067049

T. Hofmann. “Latent class models for collaborative filtering”. In Proceedings of the 16th International Joint Conference on Artifcial Intelligence. IJCAI. San Jose. CA. 2004. pp. 1234-1250.

D. Boley, M. Gini, R. Gross, E. Han, K. Hastings, G. Karypis, V. Kumar, B. Mobasher, J. Moore,“Partitioning-based clustering for web document categorization”. Journal of Decision Support Systems. Vol 27. 1999. pp. 329-341. DOI: https://doi.org/10.1016/S0167-9236(99)00055-X

D. Roussinov, H. Chen. “Information navigation on the web by clustering and summarizing query results”. Journal of Information Processing & Management. Vol 37. 2001. pp. 789-816. DOI: https://doi.org/10.1016/S0306-4573(00)00062-5

Descargas

Publicado

2013-08-30

Cómo citar

Suárez-Barón, M., & Salinas-Valencia, K. (2013). Una aproximación a la indexación semántica y a la recuperación de información. Revista Facultad De Ingeniería Universidad De Antioquia, (48), 174–187. https://doi.org/10.17533/udea.redin.16528