Application of sizing design optimization to position and velocity synthesis in four bar linkage

Authors

  • Carlos Humberto Galeano-Urueña Universidad Nacional de Colombia
  • Carlos Alberto Duque-Daza Universidad Nacional de Colombia
  • Diego Alexander Garzón-Alvarado Universidad Nacional de Colombia

Keywords:

Four bar linkage, optimum design, synthesis, sequential quadratic programming

Abstract


In this work, we have developed and solved the synthesis of position and velocity for four bar mechanisms by means of dimensional and optimal algorithms of nonlinear optimization (sequential quadratic programming SQP). The optimization problem was defined according to the synthesis needed: it can be trajectory, function or velocity generation. The velocity can be defined with an explicit or implicit trajectory. The optimization problem and the search algorithm used in this work allow reaching the best configuration by way of a simple scheme and few iterations. Alternatively, the development of a mix synthesis of position and velocity allows us validate the algorithm efficiency.

|Abstract
= 95 veces | PDF (ESPAÑOL (ESPAÑA))
= 50 veces|

Downloads

Download data is not yet available.

References

A. Erdman, G. Sandor. Mechanism Design: analysis and synthesis. Vol. 1. Ed. Prentice Hall. New York. 3era ed. 1984. pp. 494-584.

L. N. Norton. Diseño de maquinaria una introducción a la síntesis y al análisis de mecanismos y maquinas. McGraw Hill. México. pp. 205-252.

R. Fox, K. Willmert. “Optimun design for curvegenerating linkages with inequality constraints”. J. Eng. for Industry. Vol. 89. 1967. pp.144-152.

V. Cossalter, M. D. Lio, A. Doria. “Optimum synthesis of spatial function generator mechanisms”. Meccanica: an international journal of theoretical and applied mechanics. Vol. 28. 1993. pp. 263-268.

N. Bakthavachalam, J. Kimbrell. “Optimum synthesis of path-generating four-bar mechanisms”. Journal of engineering for industry. Vol. 97. 1975. pp. 314–321.

A. Youssef. “Optimal kinematic synthesis for planar linkage mechanism”. Proceedings of the I MECH E, 1975. pp. 393-398.

S. Kramer, G. Sandor. “Selective precision synthesis – a general method of optimization for planar mechanism”. Trans ASME J. Eng. for Industry. Vol. 97B. 1975. pp. 689-701.

S. Krishnamurthi. “Fuzzy synthesis of mechanisms”. Proc. of 3rd applied mechanisms and robotics conference. Cincinnati. 1993. pp. 94-101.

W. Fang. “Simultaneous type and dimensional synthesis of mechanisms by genetic algorithms”. Mechanisms synthesis and analysis. Vol. 70. 1994. pp. 35-41.

D. Mundo, J. Liu, H. Yan. “Optimal synthesis of cam linkage mechanisms for precise path generation”. ASME Journal of mechanical design. Vol. 128. 2006. pp. 1253-1260.

J. Cabrera, A. Simon, M. Prado. “Optimal synthesis of mechanisms with genetic algorithms”. Journal mechanism and machine theory. Vol. 37. 2002. pp. 1165-1177.

H. Quintero, G. Calle, A. Díaz. “Síntesis de generación de trayectoria y de movimiento para múltiples posiciones en mecanismos, utilizando algoritmos genéticos”. Scientia et Technica. Vol. 25. 2004. pp. 131-136.

A. Vasiliu, B. Yannou. “Dimensional synthesis of planar mechanisms using neural networks: application to path generator linkages”. Mechanism and machinet. Vol. 36. 2001. pp. 299-310.

J. Hoskins, G. Kramer. “Synthesis of mechanical linkages using artificial neural networksand optimization”. IEEE International Conference on Neural Networks. Vol. 2. 1993. pp. 822J - 822N.

C. Bagci, D. Burke. “Optimum synthesis of coupler curve and uniform rotary motion driven multiloop mechanisms generating complex output motions”. Journal of mechanical design. Vol. 115. 1993. pp. 967- 977.

T. Sánchez, A. Pérez. “Global optimization in path synthesis based on design space reduction”. Mechanism and machine theory. Vol. 38. 2003. pp. 579–594.

R. Bulatovic, S. Djordjevic. “Optimal synthesis of a four-bar linkage by method of controlled deviation”. Theoretical and applied mechanics. Vol. 31. 2004. pp. 265-280.

R. Sancibrian, F. Viadero, P. García, A. Fernández. “Gradient-based optimization of path synthesis problems in planar mechanisms”. Mechanism and machine theory. Vol. 39. 2004. pp. 839–856.

A. Rao. “Optimum design of four-bar function generators with minimum variance criterion”. Journal of optimization theory and applications. Vol. 29. 1979. pp. 147-153.

C. Chang. “Synthesis of adjustable four bar mechanisms generating circular arcs with specified tangential velocities”. Mechanism and machine theory. Vol. 36. 2001. pp. 387-395.

H. Yan, R. Soong. “Kinematic and dynamic design of four-bar linkages by links counterweighing with variable input speed”. Mechanism and machine theory. Vol. 36. 2001. pp. 1051-1071.

G. Guj, Z. Dong, M. Di Giacinto. “Dimensional synthesis of four bar linkage for function generation with velocity and acceleration”. Meccanica: an international journal of theoretical and applied mechanics. Vol. 16. 1981. pp. 210-219.

F. Conte. “Optimun mechanism design combining kinematic and dynamic force considerations”. J. Eng. for industry. Vol. 89. 1975. pp. 662-670.

Published

2013-09-18

How to Cite

Galeano-Urueña, C. H., Duque-Daza, C. A., & Garzón-Alvarado, D. A. (2013). Application of sizing design optimization to position and velocity synthesis in four bar linkage. Revista Facultad De Ingeniería Universidad De Antioquia, (47), 129–144. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/16690