Evaluation of chemical pretreatments for enzymatic hydrolysis of lignocellulosic residues cassava (Manihot esculenta Crantz)


  • Lilibeth Niño López University of Antioquia
  • Alejandro Acosta Cárdenas University of Antioquia
  • Ricardo Gelves Zambrano University of Antioquia




hydrolysis, ethanol, lignocellulosic waste, cellulose, hemicellulose, lignin, pretreatment


The effect of different chemical pretreatment with sulfuric acid (H2SO4), sodium hydroxide (NaOH) and hydrogen peroxide (H2O2) were evaluated by quantifying total reducing sugars produced during enzymatic hydrolysis step of lignocellulosic residues cassava (Manihot esculenta Crantz) and lignin removal percentage after pretreatment. The amount of waste used (1 to 5%) (w/v) in different particle sizes (1.18 and 0.6 mm) were pretreated separately (leaves and stems) with H2SO4, NaOH and H2O2 at varying concentrations (1 and 5%) (w/v). Plant residues were hydrolyzed with enzyme Accellerase 1500 with 50 ° C, pH 5 and 140 rpm. NaOH pretreatment enables higher total reducing sugars released during enzymatic hydrolysis (3.7 g/L) followed by leave pretreatments using H2SO4 (2.11 g/L) and H2O2 (1.54 g/L). Sugar concentrations were lower in stem pretreatments.

= 70 veces | PDF (ESPAÑOL (ESPAÑA))
= 49 veces|


Download data is not yet available.

Author Biographies

Lilibeth Niño López, University of Antioquia

Biotransformation Group, School of Microbiology.

Alejandro Acosta Cárdenas, University of Antioquia

Biotransformation Group, School of Microbiology.

Ricardo Gelves Zambrano, University of Antioquia

Biotransformation Group, School of Microbiology.


Y. Sun, J. Cheng. “Hydrolysis of lignocellulosic materials for ethanol production: a review”. Bioresour. Technol. Vol. 83. 2002. pp. 1-11.

O. Sánchez, C. Cardona. “Producción biotecnológica de alcohol carburante I: Obtención a partir de diferentes materias primas”. Interciencia. Vol. 30. 2008. pp. 671-678.

D. Schell, J. Farmer, M. Newman, J. McMillan. “Dilute sulfuric acid pretreatment of corn stover in pilot-scale reactor investigation of yields, kinetics, and enzymatic digestibilities of solids”. Appl. Biochem. Biotechnol. Vol. 105. 2003. pp. 69-85.

V. Chang, M. Holtzapple. “Fundamental factors affecting biomass enzymatic reactivity”. Appl Biochem Biotechnol. Vol. 86. 2000. pp. 5-37.

N. Mosier, R. Hendrickson, N. Ho, M. Sedlak, M. Ladisch. “Optimization of pH controlled liquid hot water pretreatment of corn stover”. Bioresour. Technol. Vol. 96. 2005. pp. 1986-1993.

A. Bjerre, A. Olesen, T. Fernqvist. “Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicelluloses”. Biotechnol. Bioeng. Vol. 49. 1996. pp. 568-577.

M. Millett, M. Effland, D. Caulfield. “Influence of fine grinding on the hydrolysis of cellulosic materialsacid vs. enzymatic”. Adv Chem Series. Vol. 181. 1979. pp.71-89.

D. Fengel, G. Wegener. Wood, Chemistry, Ultrastructure and Reactions. Ed. Walter de Gruyter. Berlin, Germany. 1989. pp. 1-549.

L. Ramos, C. Breuil, J. Saddler. “Comparison of steam pretreatment of eucalyptus, aspen and spruce wood chips and their enzymatic hydrolysis”. Appl. Biochem. Biotechnol. Vol. 34/35. 2003. pp. 37-48.

T. Lloyd, C. Wyman. “Total sugar yields for pretreatment by hemicellulose hydrolysis coupled with enzymatic hydrolysis of the remaining solids”. Bioresour Technol. Vol. 96. 2005. pp. 1967-1977.

S. Shevchenko, K. Chang, J. Robinson, J. Saddler. “Optimization of monosaccharide recovery by post-hydrolysis of the water-soluble hemicellulose component after steam explosion of softwood chips”. Bioresour Technol. Vol. 72. 2000. pp. 207-211.

P. Martel, J. Gould. “Cellulose stability and delignification after alkaline hydrogen-peroxide treatment of straw”. J. Appl. Poly. Sci. Vol. 39. 1990. pp. 707-714.

D. Hon, J. Shiraishi. Wood and cellulosic Chemistry. 2nd ed. Ed. Dekker Inc. New York, USA. 2001. pp. 275-384.

Ministerio de Agricultura y Desarrollo Rural (MADR). Evaluaciones Agropecuarias URPA´s, UMATA´s. Minagricultura y Desarrollo Rural - Dirección de Política Sectorial - Grupo Sistemas de Información. Bogotá, Colombia. 2005. pp. 14-18.

Centro Internacional de agricultura tropical (CIAT). La yuca en el tercer milenio, sistemas modernos de producción, procesamiento, utilización y comercialización. Ed. Ciat. Cali, Colombia. 1996. pp. 1-586

P. Van Soest. “Use of Detergents in the Analysis of Fibrous Feeds. II. A Rapid Method for the Determination of Fiber and Lignin”. J. Assoc. Off. Anal. Chem. Vol. 46. 1963. pp. 825-829.

S. McIntosh, T. Vancov. “Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment”. Bioresource Technology. Vol. 101. 2010. pp. 6718-6727.

S. Lin. “Methods in Lignin Chemistry”. Ed. SpringerVerlag. Berlin, Germany. 1992. pp. 242-249.

G. Miller. “Use of Dinitrosalicilic Acid Reagent for Determination of Reducing Sugar”. Analytical Chemistry. Vol. 31. 1959. pp. 426-428.

B. Adney, J. Baker. Measurement of Cellulase Activity. Technical Report NREL/TP-510-42628. Cole Boulevard, Golden, Colorado, U.S. 2008. pp. 1-8.

M. El-Sharkawy, J. Cock. “C3-C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). 1.Gas exchange”. Photosynthesis Research. Vol. 12. 1987. pp. 219-235.

L. Cerqueira. Energy from biomass. Report for the IUPAP working group on energy. Assessment and Forecasting of Energy Technology in Brazil. State University of Campinas. Campinas, Brazil. 2004. pp. 1-112.

J. McMillan. Pretreatment of lignocellulosic biomass. In: Enzymatic conversion of biomass for fuel production. M. Himmel, J. Baker, R. Overend (editors). Ed. American Chemical Society. Washington, US. 1994. pp. 292-324.

F. Carvalheiro, L. Duarte, F. Girio. “Hemicellulose biorefineries: a review on biomass pretreatments”. J. Sci. Ind. Res. Vol. 67. 2008. pp. 849-864.

M. Taherzadeh, K. Karimi. “Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review”. Int. J. Mol. Sci. Vol. 9. 2008. pp. 1621-1651.

E. Varga, Z. Szengyel, K. Reczey. “Chemical pretreatments of corn stover for enhancing enzymatic digestibility”. Appl. Biochem. Biotechnol. Vol. 98/100. 2002. pp. 73-87.

E. Sendich, M. Laser, S. Kim, H. Alizadeh, L. Laureano, B. Dale, L. Lynd. “Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price”. Bioresour. Technol. Vol. 99. 2008. pp. 8429-8435.

H. Grethlein. “The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates”. Bio.Technol. Vol. 3. 1985. pp. 155-160.

A. Sinitsyn, A. Gusakov, E. Vlasen. “Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis”. Appl. Biochem. Biotechnol. Vol. 30. 1991. pp. 43-59.

D. Thompson, H. Chen. “Comparison of pretreatment methods on the basis of available surface area”. Bioresour. Technol. Vol. 39. 1992. pp. 155-163.

C. Mooney, S. Mansfield, R. Beatson, J. Saddler. “The effect of fiber characteristics on hydrolysis and cellulase accessibility to softwood substrates”. Enzyme Microb Tech. Vol. 25/64. 1999. pp. 113-119, 644-650.

B. Yang, A. Boussaid, S Mansfield, D. Gregg, J. Saddler. “Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates”. Biotechnol. Bioeng. Vol. 77. 2002. pp. 678-684.



How to Cite

Niño López, L., Acosta Cárdenas, A., & Gelves Zambrano, R. (2014). Evaluation of chemical pretreatments for enzymatic hydrolysis of lignocellulosic residues cassava (Manihot esculenta Crantz). Revista Facultad De Ingeniería Universidad De Antioquia, (69), 317–326. https://doi.org/10.17533/udea.redin.18158

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 > >> 

You may also start an advanced similarity search for this article.