Effect of the use nickeliferous laterite and pumice as additives in the performance and durability of the Portland cement

  • María Carolina Rueda Gualdrón Universidad Industrial de Santander
  • Karen Milena Vega Nuñez Universidad Industrial de Santander
  • Carlos Alberto Ríos Reyes Universidad Industrial de Santander
Keywords: Puzzolan, nickeliferous laterite, pumice, cement, mortars

Abstract

This work evaluated the pozzolanic behavior of the niqueliferous laterite of Cerromatoso (Córdoba) and the pumice of Cemex (Boyacá), based on the NTC standards for fine aggregates. The mortars were prepared with additions of 2.5%, 5% and 10% as substitutes of type I Portland cement, which tested to extreme environments (high temperatures and chemical attacks with H2 SO4 y MgSO4 ). Results demonstrates how these alternative materials increase or decrease their puzolanic degree, as well as the effect of these additives in the mortar mixtures with the time, demonstrating similar properties respect to mortars prepared with type I Portland cement. Therefore, the mortars have an acceptable answer under the tested conditions, although it is possible to improve their workability and durability, collaborating not only with of the energy saving in the production of type I Portland cement but also in the use of alternative additives that let to mitigate the environmental impact produced by the cement industry.

|Abstract
= 190 veces | PDF
= 185 veces|

Downloads

Download data is not yet available.

Author Biographies

María Carolina Rueda Gualdrón, Universidad Industrial de Santander

Escuela de Geología

Karen Milena Vega Nuñez, Universidad Industrial de Santander

Escuela de Geología

Carlos Alberto Ríos Reyes, Universidad Industrial de Santander

Escuela de Geología

References

S. Desai and S. Ujjaval, “Effective use of Industrial Waste in Cement Mortar”, International Journal of Earth Sciences and Engineering, vol. 5, no. 6, pp. 1677- 1682, 2012.

D. Agrawal, P. Hinge, U. Waghe and S. Raut, “Utilization of industrial waste in construction material - A review”, International Journal of Innovative Research in Science, Engineering and Technology, vol. 3, no. 1, pp. 8390- 8397, 2014.

J. Coutinho, “The combined benefits of CPF and RHA in improving the durability of concrete structures”, Cement and Concrete Composites, vol. 25, no. 1, pp. 51- 59, 2003.

J. Escalante, A. Navarro and L. Gómez, “Caracterización de morteros de cemento portland substituido por metacaolín de baja pureza”, Revista ALCONPAT, vol. 1, no. 2, pp. 156-169, 2011.

E. Gartner, “Industrially interesting Approaches to low CO2 Cements”, Cement and Concrete Research, vol. 34, no. 9, pp. 1489-1498, 2004.

A. Naceri and M. Hamina, “Effects of pozzolanic admixture (waste bricks) on mechanical response of mortar”, IJE Transactions B: Applications, vol. 21, no. 1, pp. 1-8, 2008.

M. Sánchez and V. Sánchez, “Comportamiento a tracción de cementos reforzados con fibras de vidrio”, Informes de la Construcción, vol. 43, no. 413, pp. 77- 89, 1991.

A. Hauser, U. Eggenberger and T. Mumenthaler, “Fly ash from cellulose industry as secondary raw material in autoclaved aerated concrete”, Cement and Concrete Research, vol. 29, no. 3, pp. 297-302, 1999.

R. Gutiérrez, S. Delvasto and R. Talero, Permeability properties of cement mortars blended with Silica Fume, Fly Ash, and Blast Furnace Slag, ASTM Standard STP 1399, 2000.

J. Swanepoel and C. Strydom, “Utilization of fly ash in a geopolymeric material”, Applied Geochemistry, vol. 17, no. 8, pp. 1143-1148, 2002.

A. Fernández and A. Palomo, “Composition and microstructure of alkali activated fly ash binder: Effect of the activator”, Cement and Concrete Research, vol. 35, no. 10, pp. 1984-1992, 2005.

V. Sahu and V. Gayathri, “The Use of Fly Ash and Lime Sludge as Partial Replacement of Cement in Mortar”, International Journal of Engineering and Technology Innovation, vol. 4, no. 1, pp. 30-37, 2014.

N. Hasparyk, P. Monteiro and H. Carasek, “Effect of silica fume and rice husk ash on alkali-silica reaction”, Materials Journal, vol. 97, no. 4, pp. 486-492, 2000.

F. Puertas, M. Varela and T. Vazquez, “Behaviour of cement mortars containing an industrial waste from aluminium refining: Stability in Ca(OH)2 solutions”, Cement and Concrete Research, vol. 29, no. 10, pp. 1673-1680, 1999.

F. Puertas et al., “Ceramic wastes as raw materials in Portland cement clinker fabrication: characterization and alkaline activation”, Materiales de Construccion, vol. 56, no. 281, pp. 73-84, 2006.

M. Singh and M. Garg, “Making of anhydrite cement from waste gypsum”, Cement and Concrete Research, vol. 30, no. 4, pp. 571-577, 2000.

B. Safi, M. Saidi, D. Aboutaleb and M. Maallem, “The use of plastic waste as fine aggregate in the selfcompacting mortars: Effect on physical and mechanical properties”, Construction and Building Materials, vol. 43, pp. 436-442, 2013.

A. Givi, S. Rashid, F. Aziz and M. Salleh, “Contribution of rice husk ash to the properties of mortar and concrete: A Review”, Journal of American Science, vol. 6, no. 3, pp. 157-165, 2010.

W. Aules, “Utilization of crumb rubber as partial replacement in sand for cement mortar”, European Journal of Scientific Research, vol. 51, no. 2, pp. 203- 210, 2011.

S. Izquierdo, R. Mejía and J. Torres, “Study of mortars added with fluid catalytic cracking catalyst residue (FCC) under the influence of high temperatures”, Ingeniería y Competitividad, vol. 16, no. 2, pp. 297- 308, 2014.

F. Koksal, O. Gencel, W. Brostow and H. Hagg, “Effect of high temperature on mechanical and physical properties of lightweight cement based refractory including expanded vermiculite”, Materials Research Innovations, vol. 16, no. 1, pp. 7-13, 2012.

J. Torres, R. Mejía and C. Gutiérrez, “Desempeño de morteros adicionados con metacaolín frente a la acción de sulfatos”, Revista Ingeniería e Investigación, vol. 28, no. 1, pp. 117-122, 2008.

R. Mejía, J. Torres, J. Silva and S. Delvasto, “Influencia de la adición de metacaolín a morteros y hormigones”, Boletín Geológico y Minero, vol. 117, no. 4, pp. 715- 722, 2006.

K. Hossain, “Properties of volcanic pumice based cement and lightweight concrete”, Cement and Concrete Research, vol. 34, no. 2, pp. 283–291, 2004.

N. Degirmenci and A. Yilmaz, “Use of pumice fine aggregate as alternative to conventional sand in production of lightweight cement mortar”, Indian Journal of Engineering and Material Sciences, vol. 18, no. 1, pp. 61-68, 2011.

Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Ingeniería Civil y Arquitectura. Cemento Portland. Especificaciones físicas y mecánicas, NTC 121, 1982.

Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Ingeniería Civil y Arquitectura. Cemento Portland. Especificaciones químicas, NTC 321, 1982.

Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Concretos. Mortero premezclado para mapostería, NTC 3356, 2000.

Instituto Nacional de Vías (INVIAS), Análisis granulométrico de suelos por tamizado, Norma INV E-123, 2007.

Instituto Nacional de Vías (INVIAS), Valor de azul de metileno en agregados finos y en llenante mineral, Norma INV E-235, 2007.

Instituto Nacional de Vías (INVIAS), Gravedad específica y absorción de agregados finos, Norma INV E-222, 2007.

Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Método para determinar la resistencia a la compresión de morteros de cemento hidráulico usando cubos de 50 mm de lado, NTC 220, 1998.

Simon Fraser University, Mineral Energy Dispersive Spectra (EDS). [Online]. Available: http://www.sfu.ca/~marshall/sem/mineral.htm. Accessed on: Apr. 22, 2015.

Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Concretos. Método de ensayo para determinar las impurezas orgánicas en agregado fino para concreto, NTC 127, 2000.

M. Broekmans, “The alkali-silica reaction: mineralogical and geochemical aspects of some Dutch concretes and Norwegian mylonites”, Ph.D. dissertation, Utrecht University, Utrecht, Netherlands, 2002.

N. Fatt and Y. Beng, “Potential alkali-silica reaction in aggregate of deformed granite”, Bulletin of the Geological Society of Malaysia, vol. 53, pp. 81-88, 2007.

N. Fatt, “Microstructural characteristics of some alkaliaggregate reactive granites of Peninsular Malaysia”, in National Geoscience Conference, Selangor, Malaysia, 2010, pp. 81-82.

N. Fatt, J. Raj and A. Ghani, “Potential Alkali-Reactivity of Granite Aggregates in the Bukit Lagong Area, Selangor, Peninsular Malaysia”, Sains Malaysiana, vol. 42, no. 6, pp. 773–781, 2013.

D. Gomes, H. Conceição, V. Carvalho, R. Soares and L. Silva, “Influence of granitic aggregates from northeast Brazil on the alkali-aggregate reaction”, Materials Research, vol. 17, no. 1, pp. 51-58, 2014.

Hess pumice, Hess Pozz Flatlines the Alkali Silica Reaction (ASR) for Pennies a Yard. [Online]. Available: http://www.hesspumice.com/pumice-pages/pumiceuses/pumice-pozzolan-mitigates-asr.html. Accessed on: Nov. 03, 2015.

P. Turker, K. Erdogdu and B. Erdogan, “Investigation of fire-exposed mortars with different types of aggregates”, Cement Concrete World, vol. 6, pp. 52- 67, 2001.

I. Netinger, I. Kesegic and I. Guljas, “The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates”, Fire Safety Journal, vol. 46, no. 7, pp. 425-430, 2011.

P. Mehta and P. Monteiro, Concrete: Microstructure, Properties, and Materials, 4th ed. New York, USA: McGraw-Hill, 2014.

Published
2016-06-16
How to Cite
Rueda Gualdrón M. C., Vega Nuñez K. M., & Ríos Reyes C. A. (2016). Effect of the use nickeliferous laterite and pumice as additives in the performance and durability of the Portland cement. Revista Facultad De Ingeniería Universidad De Antioquia, (79), 163-173. https://doi.org/10.17533/udea.redin.n79a15