Comportamiento de una mezcla asfáltica tibia usando un aditivo químico para espumar el asfalto

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.n78a17

Palabras clave:

mezcla asfáltica en caliente, aditivo químico, asfalto espumado, comportamiento mecánico, mezcla asfáltica tibia

Resumen

La principal ventaja de emplear mezclas asfálticas tibias (WMA, por sus siglas en inglés) es de carácter ambiental, aunque ofrecen adicionalmente ventajas técnicas y económicas. El artículo presenta y discute los resultados de una fase experimental ejecutada con el fn de comparar el comportamiento que experimenta una mezcla WMA con respecto a una mezcla densa en caliente tradicional (HMA, por sus siglas en inglés). Dos mezclas WMA y dos HMA se fabricaron empleando como tamaño máximo de partícula 10 mm y 19 mm. Las mezclas WMA se modifcaron con un aditivo líquido que espuma el asfalto. El aditivo actualmente se encuentra en proceso de patente. El asfalto base utilizado para la fabricación de las mezclas fue CA 60-70 (PG 58-22). Sobre las mezclas se midieron la resistencia bajo carga monotónica y dinámica, así como la resistencia al daño por humedad, empleando ensayos Marshall, módulo resiliente, deformación permanente y resistencia a la tracción indirecta. Como conclusión general se reporta que el aditivo químico disminuye la temperatura de la mezcla en 30°C, así mismo contribuye con una adecuada trabajabilidad y composición volumétrica de la mezcla WMA. Adicionalmente, las mezclas WMA experimentan mayor resistencia bajo carga monotónica y dinámica a altas temperaturas de servicio, así como mayor resistencia al daño por humedad.

|Resumen
= 348 veces | PDF (ENGLISH)
= 224 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Hugo Alexander Rondón-Quintana, Universidad Distrital Francisco José de Caldas

Profesor Asociado. Facultad del Medio Ambiente y Recursos Naturales.

Wilmar Darío Fernández-Gómez, Universidad Distrital Francisco José de Caldas

Profesor Asociado. Facultad del Medio Ambiente y Recursos Naturales.

Carlos Alfonso Zafra-Mejía, Universidad Distrital Francisco José de Caldas

Profesor Asociado. Facultad del Medio Ambiente y Recursos Naturales.

Citas

S. Al-Rawashdeh and S. Sargand, “Performance Assessment of a Warm Asphalt Binder in the Presence of Water by Using Surface Free Energy Concepts and Nanoscale Techniques”, J. Mater. Civ. Eng., vol. 26, no. 5, pp. 803-811, 2014.

R. Bonaquist, “Mix Design Practices for Warm Mix Asphalt”, National Cooperative Highway Research Program, Washington, D. C., USA, NCHRP Report 691, 2011.

Z. You and S. Goh, “Laboratory Evaluation of Warm Mix Asphalt: A Preliminary Study”, Int. J. Pavement Res. Tech., vol. 1, no. 1, pp. 34-40, 2008.

L. Robjent and W. Dosh, “Warm-Mix Asphalt for Rural County Roads”, in 14th Conference on Cold Regions Engineering, Duluth, USA, 2009, pp. 438-454.

B. Prowell, B. Frank, L. Osborne, T. Kriech and R. West, “Effects of WMA on Plant Energy and Emissions and Worker Exposures to Respirable Fumes”, National Cooperative Highway Research Program, Washington, D.C., USA, NCHRP 9-47A Defat Final Report, Vol. II, 2014.

R. West, C. Rodezno, G. Julian and D. Prowell, “Engineering Properties and Field Performance of Warm Mix Asphalt Technologies”, National Cooperative Highway Research Program, Washington, D. C., USA, NCHRP Final Report Project No. 09-47A, Feb. 2014.

F. Morea, R. Marcozzi and G. Castaño, “Rheological Properties of Asphalt Binders with Chemical Tensoactive Additives Used in Warm Mix Asphalts (WMAs)”, Constr. Build. Mater., vol. 29, pp. 135-141, 2012.

C. Wu and M. Zeng, “Effects of Additives for Warm Mix Asphalt on Performance Grades of Asphalt Binders”, J. Testing and Evaluation, vol. 40, no. 2, pp. 265-272, 2012.

M. Fakhri, A. Ghanizadeh and H. Omrani, “Comparison of Fatigue Resistance of HMA and WMA Mixtures Modified by SBS”, Procedia - Social and Behavioral Sciences, vol. 104, pp. 168-177, 2013.

D. Rossi, S. Filippi, F. Merusi, F. Giuliani and G. Polacco, “Internal Structure of Bitumen/Polymer/Wax Ternary Mixtures for Warm Mix Asphalts”, J. Applied Polymer Science, vol. 129, no. 6, pp. 3341-3354, 2013.

E. Hajj, M. Souliman and E. Cortez, “Influence of Warm Mix Additive on Mechanistic, Economical, and Environmental Attributes of a Polymer-Modified Asphalt Mixture”, Adv. in Civil Eng. Mat., vol. 3, no. 1, pp. 88-106, 2014.

X. Yu, Z. Leng and T. Wei, “Investigation of the Rheological Modification Mechanism of Warm-Mix Additives on Crumb-Rubber-Modified Asphalt”, J. Mater. Civ. Eng., vol. 26, no. 2, pp. 312-319, 2014.

S. Goh and Z. You, “Mechanical Properties of Porous Asphalt Pavement Materials with Warm Mix Asphalt and RAP”, J. Transportation Eng., vol. 138, no. 1, pp. 90-97, 2012.

J. Wurst and B. Putman, “Laboratory Evaluation of Warm-Mix Open Graded Friction Course Mixtures”, J. Mater. Civ. Eng., vol. 25, no. 3, pp. 403-410, 2013.

M. Tao and R. Mallick, “Effects of Warm-Mix Asphalt Additives on Workability and Mechanical Properties of Reclaimed Asphalt Pavement Material”, Transportation Research Record: Journal of TRB, vol. 2126, pp. 151-160, 2009.

M. Rubio, G. Martínez, L. Baena and F. Moreno, “Warm Mix Asphalt: An Overview”, Journal of Cleaner Production, vol. 24, pp. 76-84, 2012.

J. Doyle and I. Howard, “Rutting and Moisture Damage Resistance of High Reclaimed Asphalt Pavement Warm Mixed Asphalt: Loaded Wheel Tracking vs. Conventional Methods”, Road Mater. Pavement Des., vol. 14, pp. 148-172, 2013.

J. Doyle and I. Howard, “Thermal Cracking Potential of High Rap-Wma Evaluated with Bending Beam Rheometer Mixture Beam Test”, J. Testing and Evaluation, vol. 41, no. 2, 2013.

F. Nejad, A. Azarhoosh, G. Hamedi and H. Roshani, “Rutting Performance Prediction of Warm Mix Asphalt Containing Reclaimed Asphalt Pavements”, Road Mater. Pavement Des., vol. 15, no. 1, pp. 207-219, 2014.

Y. Kim, J. Zhang and H. Ban, “Moisture Damage Characterization of Warm-Mix Asphalt Mixtures Based on Laboratory-Field Evaluation”, Constr. Build. Mater., vol. 31, pp. 204-211, 2012.

A. Topal et al., “Evaluation of Mixture Characteristics of Warm Mix Asphalt Involving Natural and Synthetic Zeolite Additives”, Constr. Build. Mater., vol. 57, pp. 38-44, 2014.

T. Gandhi, W. Rogers and S. Amirkhanian, “Laboratory Evaluation of Warm Mix Asphalt Ageing Characteristics”, Int. J. Pavement Eng., vol. 11, no. 2, pp. 133-142, 2010.

S. Goh, M. Hasan and Z. You, “Performances Evaluation of Cecabase® RT in Warm Mix Asphalt Technology”, Procedia - Social and Behavioral Sciences, vol. 96, pp. 2782-2790, 2013.

Z. Hossain and M. Zaman, “Behavior of Selected Warm Mix Asphalt Additive Modified Binders and Prediction of Dynamic Modulus of the Mixes”, J. Testing and Evaluation, vol. 41, no. 1, 2013.

R. Vidal, E. Moliner, G. Martínez and M. Rubio, “Life Cycle Assessment of Hot Mix Asphalt and Zeolite-Based Warm Mix Asphalt with Reclaimed Asphalt Pavement”, Resources, Conservation and Recycling, vol. 74, pp. 101-114, 2013.

K. Vasconcelos, A. Bhasin and D. Little, “Influence of Reduced Production Temperatures on the Adhesive Properties of Aggregates and Laboratory Performance of Fine Aggregate-Asphalt Mixtures”, Road Mater. Pavement Des., vol. 11, no. 1, pp. 47-64, 2010.

S. Capitão, L. Picado and F. Martinho, “Pavement Engineering Materials: Review on the Use of Warm-Mix Asphalt”, Constr. Build. Mater., vol. 36, pp. 1016-1024, 2012.

C. Wang, P. Hao, F. Ruan X. Zhang and S. Adhikari, “Determination of the Production Temperature of Warm Mix Asphalt by Workability Test”, Constr. Build. Mater., vol. 48, pp. 1165-1170, 2013.

Z. Tao, W. Huang, Q. Du and J. Yan, “Warm Mix Asphalt Technology Applied at Low Air Temperature in China”, Road Mater. Pavement Des., vol. 10, pp. 337-347, 2009.

I. Howard, J. Doyle, J. Hemsley, J. Baumgardner and L. Cooley, “Emergency Paving Using Hot-Mixed Asphalt Incorporating Warm Mix Technology”, Int. J. Pavement Eng., vol. 15, no. 3, pp. 202-214, 2014.

A. Ali et al., “Effect of temperature reduction, foaming water content, and aggregate moisture content on performance of foamed warm mix asphalt”, Constr. Build. Mater., vol. 48, pp. 1058-1066, 2013.

T. Gandhi, C. Akisetty and S. Amirkhanian, “A Comparison of Warm Asphalt Binder Aging with Laboratory Aging Procedures”, J. Testing and Evaluation, vol. 38, no. 1, 2010.

M. Nazzal, S. Sargand and A. Al-Rawashdeh, “Evaluation of Warm Mix Asphalt Mixtures Containing RAP Using Accelerated Loading Tests”, J. Testing and Evaluation, vol. 39, no. 3, 2011.

S. Sargand, M. Nazzal, A. Al-Rawashdeh and D. Powers, “Field Evaluation of Warm-Mix Asphalt Technologies”, J. Mater. Civ. Eng., vol. 24, no. 11, pp. 1343-1349, 2012.

Z. Hossain, M. Zaman, E. O’Rear and D. Shen, “Effectiveness of Water-Bearing and Anti-Stripping Additives in Warm Mix Asphalt Technology”, Int. J. Pavement Eng., vol. 13, no. 5, pp. 424-432, 2012.

B. Middleton and R. Forfylow, “Evaluation of Warm-Mix Asphalt Produced With the Double Barrel Green Process”, Transportation Research Record: Journal of TRB, vol. 2126, pp. 19-26, 2009.

Instituto Nacional de Vías (INVIAS), “Especificaciones Generales de Construcción de Carreteras”, INVIAS / Ministerio de Transporte, Bogotá, Colombia, Tech. Doc., 2013.

United Nations Economic Commissions for Europe (UNECE), Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 5th ed. New York, US /Geneva, Switzerland: United Nations, 2013.

Descargas

Publicado

2016-03-18

Cómo citar

Rondón-Quintana, H. A., Fernández-Gómez, W. D., & Zafra-Mejía, C. A. (2016). Comportamiento de una mezcla asfáltica tibia usando un aditivo químico para espumar el asfalto. Revista Facultad De Ingeniería Universidad De Antioquia, (78), 129–138. https://doi.org/10.17533/udea.redin.n78a17

Artículos más leídos del mismo autor/a