Microorganismos aislados de suelos urbanos contaminados altamente efectivos en la degradación de pesticidas recalcitrantes
DOI:
https://doi.org/10.17533/udea.redin.n81a10Palabras clave:
bioremediación, clorpirifos, malation, suelo de Moravia, pesticidas organosfosforados, metil paratiónResumen
Entre 1972 y 1984 todo tipo de residuos sólidos de la ciudad de Medellin fueron depositados en un área ocupada que no tuvo especificaciones técnicas para que fuesen depositados aquellos residuos. Allí fueron depositados residuos domesticos, hospitalarios e industriales que se fueron acumulando hasta alcanzar una montaña de residuos de más de 10 metros de altura, con el agravante que cuando clausuraron el sitio para el depósito de residuos sólidos allí se quedaron viviendo las personas que hacían reciclaje. Un diagnóstico llevado a cabo por el Grupo GDCON de la Universidad de Antioquia entre el 2004 y 2005, y financiado por el Área Metropiltana del Valle de Aburrá, se comprobó que los lixiviados de la montaña de residuos de Moravia, y que atravesaban algunas casas, tenía metales pesados, fenoles, sulfuros, benceno, tolueno, xileno, entre otros. En otro estudio realizado por el GDCON y la Universidad Nacional-sede de Medellín entre 2007 y 2009, se comprobó que las plantas y animales (ratones, cucarachas) de Moravia también contenían dichos contaminantes tóxicos. Por esta razón, la alcaldía de Medellín decidió trasladar a las personas que vivian en la montaña de residuos de Moravia a otro sitio de Medellin (entre 2010 y 2014). Consorcios microbianos aislados de los suelos de la montaña de residuos de Moravia (MS) mostraron una alta capacidad para degradar los pesticidas clorpirifos, metil paratión y malatión en concentraciones de 20, 30 y 130 mg Kg -1 en un estudio realizado en el laboratorio del GDCON. Como un punto de comparación, la degradación de los 3 pesticides fue también realizada por conconsorcios aislados de compost inmaduro (IC). El consorcio microbiano MS mostró mayor velocidad de degradación de clorpirifos, metil paratión y malatión que el consorcio microbiano IC.
Descargas
Citas
A. J. Trimble and M. J. Lydy, “Effects of triazine herbicides on organophosphate insecticide toxicity in Hyalella Azteca,” Archives of Environmental Contamination and Toxicology, vol. 51, no. 1, pp. 29-34, 2006.
D. M. Roberts and C. K. Aaron, “Management of acute organophosphorus pesticide poisoning,” BMJ, vol. 334, pp. 629-634, 2007.
J. B. Weber, “Properties and behavior of pesticides in soil”, in Mechanisms of pesticide movement into ground water, 1st ed., R. C. Honeycutt and D. J. Schabacker (eds). London, UK: Lewis, 1994, 15-41.
S. Anwar, F. Liaquat, Q. M. Khan, Z. M. Khalid, and S. Iqbal, “Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1,” Journal of Hazardous Materials, vol. 168, no. 1, pp. 400-405, 2009.
C. Frazar, “The Bioremediation and Phytoremediation of Pesticide-contaminated Sites,” U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington, D.C., USA, Tech. Rep., Jun-Aug. 2000.
K. T. Semple, B. J. Reid, and T. Fermor, “Impact of composting strategies on the treatment of soils contaminated with organic pollutants,” Environmental Pollution, vol. 112, no. 2, pp. 269-283, 2001.
D. B. Watts, H. A. Torbert, Y. Feng, and S. Prior, "Soil Microbial Community Dynamics as Influenced by Composted Dairy Manure, Soil Properties, and Landscape Position," Soil Science, vol. 175, no. 10, pp. 474-486, 2010.
United States Environmental Protection Agency (EPA), “Innovative Uses of Compost. Bioremediation and pollution prevention,” U.S. Environmental Protection Agency, Solid Waste and Emergency Response, Washington, USA, Tech. Rep. EPA530-F-97-042, Oct. 1997.
X. X. Zhang, S. P. Cheng, C. J. Zhu, and S. L. Sun, “Microbial PAH-degradation in soil: degradation pathways and contributing factors,” Pedosphere, vol. 16, no. 5, pp. 555-565, 2006.
C. Arnosti, “Microbial Extracellular Enzymes and the Marine Carbon Cycle,” Annual Review of Marine Science, vol. 3, pp. 401–425, 2011.
J. R. van der Meer, “Environmental pollution promotes selection of microbial degradation pathways,” Frontiers in Ecology and the Environment, vol. 4, pp. 35–42, 2006.
N. Pino, C. Domínguez, and G. A. Peñuela, “Isolation of a Selected Microbial Consortium from a Contaminated Site soil Capable of Degrading Methyl parathion and p-nitrophenol,” Journal of Environmental Science and Health, Part B, vol. 46, pp. 173-180, 2011.
A. Walkley and I. A. Black, “An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method,” Soil Science, vol. 37, pp. 29-38, 1934.
J. Abraham, “Organic carbon estimations in soils: analytical protocols and their implications,” Rubber science, vol. 26, pp. 45-54, 2013.
R. H. Bray and L. T. Kurtz, “Determination of total, organic, and available forms of phosphorus in soils,” Soil science, vol. 59, pp. 39-46, 1945.
N. E. Smeck, “Phosphorus dynamics in soils and landscapes,” Geoderma, vol. 36, pp. 185-199, 1985.
M. C. Leconte, M. J. Mazzarino, P. Satti, M. C. Iglesias, and F. Laos, “Co-composting rice hulls and/or sawdust with poultry manure in NE Argentina,” Waste Management, vol. 29, pp. 2446-2453, 2009.
United States Environmental Protection Agency (EPA), “A Citizen’s Guide to Bioremediation,” U.S. Environmental Protection Agency, Solid Waste and Emergency Response, Washington, USA, Tech. Rep. EPA542-F-96-007, Apr. 1996.
J. Bollag, C. Myers, and R. Minard, “Biological and chemical interactions of pesticides with soil organic matter,” The Science of the Total Environment, vol. 123-124, pp. 205-217, 1992.
J. W. Doran and M. R. Zeiss, “Soil health and sustainability: managing the biotic component of soil,” Quality. Appl Soil Ecol., vol. 15, pp. 3–11, 2000.
D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel, and D. A. Zuberer, Principles and applications of soil microbiology, 2nd ed. New Jersey, USA: Prentice Hall, 2005.
J. L. Havlin, J. D. Beaton, S. L. Tisdale, and W. L. Nelson, Soil Fertility and Fertilizers, 8th ed. New Jersey, USA: Prentice Hall, 2005.
F. Caravaca, A. Lax, and J. Albaladejo, “Organic matter, nutrient contents and catión. exchange capacity in fine fractions from semiarid calcareous soils,” Geoderma, vol. 93, pp. 161–176, 1996.
D. B. Edmond, “Some effects of sheep treading on the growth often pasture species,” New Zealand Journal of Agricultural Research, vol. 7, pp. 1-16, 1964.
J. Castro, C. Sánchez, J. A. Rodríguez and J. L. Tadeo, “Persistence of chlorpyrifos and endosulfan in soil,” Fresenius Environmental Bulletin, vol. 11, pp. 578-582, 2002.
A. M. Fogarty and O. H. Tuovinen, “Microbiological degradation of pesticides in yard waste composting,” Microbiol Rev., vol 55, pp. 225-33, 1991.
L. Bastiaens et al., “Isolation of adherent polycyclic aromatic hydrocarbon (PHA)-degrading bacteria using PAH-sorbing carriers,” Applied and Environmental Microbiology, vol. 66, pp. 1834-1843, 2000.
N. Leys, L. Bastiaens, W. Verstraete, and D. Springael, “Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil,” Applied Microbiology and Biotechnology, vol. 66, no. 6, pp. 726-736, 2005.
M.Vidali, “Bioremediation. An Overview,” Pure and Applied Chemistry, vol. 73, no. 7, pp. 1163-1172, 2001.
J. Tarradellas, G. Bitton, and D. Rossel, Soil ecotoxicology, 1st ed. Boca Raton, USA: CRC Press, 1996.
D. Karpouzas, A. Fotopoulou, U. Menkissoglu, and B. Singh, “Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates,” FEMS Microbiology Ecology, vol. 53, pp. 369-378, 2005.
B. Singh, A. Walker, and D. Wright, “Cross-enhancement of accelerated biodegradation of organophosphorus compounds in soils: Dependence on structural similarity of compounds,” Soil Biology and Biochemistry, vol. 37, pp. 1675-1682, 2005.
L. N. Robertson, K. J. Chandler, B. D. Stickley, R.F. Cocco, and M. Ahmetagic, “Enhanced microbial degradation implicated in rapid loss of chlorpyrifos from the controlled-release formulation in soil,” Crop Protection, vol. 17, pp. 29-33, 1998.
B. Singh, A. Walker, J. Morgan, and D. Wright, “Role of Soil pH in the Development of Enhanced Biodegradation of Fenamiphos,” Applied and Environmental Microbiology, vol. 69, pp. 7035-7043, 2003.
P. Kanekar, B. J. Bhadbhade, N. M. Deshpande, and S. Sarnaik, “Biodegradation of Organophosphorus pesticides,” Proc. Indian natn Sci Academic, vol. 70, no. 1, pp. 57-70, 2004.
B. Singh, R. Kuhad, A. Singh, R. Lal, and K. Tripathi, “Biochemical and molecular basis of pesticide degradation by microorganisms,” Critical Reviews in Biotechnology, vol. 19, pp. 197-225, 1999.
M. A. Cole, X. Liu, and L. Zhang, “Plant and Microbial Establishment in Pesticide-Contaminated Soils Amended With Compost,” in Bioremediation Through Rhizosphere Technology, 1st ed., T. A. Anderson, J.R. Coats (eds). Washington, D. C., USA: American Chemical Society, 1994, pp. 210-222.
A. D. Neklyudov, G. N. Fedotov, and A. N. Ivankin, “Intensification of Composting Processes by Aerobic Microorganisms: A Revie,” Appl. Biochem. Microbiol., vol. 44, pp. 6-18, 2008.
United States Environmental Protection Agency (EPA), “An Analysis of Composting as an Environmental Remediation Technology”, U.S. Environmental Protection Agency, Solid Waste and Emergency Response, Washington, USA, Tech. Rep. EPA530-R-98-008, Apr. 1998.
A. Kumar et al., “Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition,” Bull Environ. Contam. Toxicol., vol. 88, no. 4, pp. 538-542, 2012.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.